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I. INTRODUCTION

Il. LITERATURE REVIEW
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Fig. 2. Local Search of Crossover and Mutation

Parallel Computing

Parallel computing is a form of computation in which many calculations are
carried out simultaneously,[5] operating on the principle that large problems can
often be divided into smaller ones, which are then solved concurrently ("in
parallel’). There are several different forms of parallel computing: bit-
level, instruction level , data, and task parallelism.

Parallelism has been employed for many years, mainly in high-performance
computing, but interest in it has grown lately due to the physical constraints
preventing frequency scaling.[6] As power consumption (and consequently heat

generation) by computers has become a concern in recent years,[7] parallel

computing has become the dominant paradigm in computer architecture, mainly
in the form of multicore processors.[8]

Parallel computers can be roughly classified according to the level at which
the hardware supports parallelism, with multi-core and multi-processor computers
having multiple processing elements within a single machine, while clusters, MPPs,
and gridsuse multiple computers to work on the same task. Specialized parallel
computer architectures are sometimes used alongside traditional processors, for
accelerating specific tasks.

Parallel computer programs are more difficult to write than sequential
ones,[9] because concurrency introduces several new classes of potential software
bugs, of which race conditions are the most common.

Communication and synchronization between the different subtasks are
typically some of the greatest obstacles to getting good parallel program
performance. The maximum possible speed-up of a program as a result of

parallelization is known as Amdahl's law

CUDA Parallel Computing Platform [10]

NVIDIA® CUDA™ technology leverages the massively parallel processing
power of NVIDIA GPUs. The CUDA architecture is a revolutionary parallel
computing architecture that delivers the performance of NVIDIA’s world-renowned
graphics processor technology to general purpose GPU Computing. Applications
that run on the CUDA architecture can take advantage of an installed base of over
one hundred million CUDA-enabled GPUs in desktop and notebook computers,
professional workstations, and supercomputer clusters.

With the CUDA architecture and tools, developers are achieving dramatic
speedups in fields such as medical imaging and natural resource exploration, and
creating breakthrough applications in areas such as image recognition and real-
time HD video playback and encoding.

CUDA enables this unprecedented performance via standard APIs such as
the soon to be released OpenCL™ and DirectX® Compute, and high level
programming languages such as C/C++, Fortran, Java, Python, and the Microsoft
NET Framework.

The CUDA Architecture consists of several components, in the green boxes
1. Parallel compute engines inside NVIDIA GPUs
2. OS kernel-level support for hardware initialization, configuration, etc.

3. User-mode driver, which provides a device-level API for developers
4. PTX instruction set architecture (ISA) for parallel computing kernels and

functions

The CUDA Architecture consists of several components, in the green boxes below:
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Fig.3. CUDA Architecture

Travelling salesman problem

The travelling salesman problem (TSP) or travelling salesperson problem asks
the following question: Given a list of cities and the distances between each pair
of cities, what is the shortest possible route that visits each city exactly once and
returns to the origin city? It is an NP-hard problem in combinatorial optimization,
important in operations research and theoretical computer science.

The problem was first formulated in 1930 and is one of the most intensively
studied problems in optimization. It is used as a benchmark for many optimization
methods. Even though the problem is computationally difficult,[11] a large
number of heuristics and exact methods are known, so that some instances with
tens of thousands of cities can be solved.

The TSP has several applications even in its purest formulation, such as
planning, logistics, and the manufacture of microchips. Slightly modified, it appears
as a sub-problem in many areas, such as DNA sequencing. In these applications,
the concept city represents, for example, customers, soldering points, or DNA
fragments, and the concept distance represents travelling times or cost, or a
similarity measure between DNA fragments. In many applications, additional
constraints such as limited resources or time windows make the problem
considerably harder. TSP is a special case of the travelling purchaser problem.

In the theory of computational complexity, the decision version of the TSP
(where, given a length L, the task is to decide whether any tour is shorter than L)
belongs to the class of NP-complete problems. Thus, it is likely that the worst-
case running time for any algorithm for the TSP increases exponentially with the

number of cities.

lll. ALGORITHMS

a. Algorithm inspired by Ant

A Parallel Ant Colony Optimization Algorithm with GPU-
Acceleration Based on All-In-Roulette Selection [12]

This paper presents and implements a parallel MAX-MIN Ant System (MMAS)
based on a GPU+CPU hardware platform under the MATLAB environment with
Jacket toolbox to solve Traveling Salesman Problem (TSP). The key idea is to let
all ants share only one pseudorandom number matrix, one pheromone matrix,
one taboo matrix, and one probability matrix. We also use a new selection
approach based on those matrices, named AR (All-In-Roulette). The main
contribution of this paper is the description of how to design parallel MMAS based
on those ideas and the comparison to the relevant sequential version. The
computational results show that our parallel algorithm is much more efficient
than the sequential version.

Fig.d shows the experimental results when the matrix size is from 3x3 to
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Fig.4. Speedup of GPU-to-CPU in multiplication between three matrices
Fig.5 gives the comparison of overall computation time between the
GPU+CPU and CPU implementation of the MMAS algorithm for 9 TSP instances.
Due to the tiny percentage of initialization, all the tests are limited to 50 iterations.
The GPU can only work when the data is moved from CPU to it; the movement

from GPU to CPU is also necessary. The absolute transfer time is linearly

dependent on matrix size, and is with a small initialization penalty (less than a

hundred microseconds).
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Fig.5. Overall Speedup of GPU+CPU to CPU. Running from pr76 to pr1002.

Fig.6 shows that within our parallel MMAS algorithm, the percentage of time-
consuming in data transfer increases steadily with the growth of the number of
TSP nodes. For matrix size in the range 0.25-1.25MB, the transfer rate reaches the

peak, which is above 3.5GB/s
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Fig.6. Percentage of time-consuming in data transfer within the parallel MMAS

algorithm. Running from pr76 to pr1002.

The results indicate that, when the TSP nodes are approximately less than
450, the GPU-to-CPU speedup increases steadily with the increase of number of
TSP nodes. After the number of nodes reaches 450, the growth of speedup slows

down significantly.

Utilizing GPGPUs for Design Validation with a Modified Ant Colony
Optimization [13]

This paper, them propose a novel parallel state justification tool, GACO,
utilizing Ant Colony Optimization (ACO) on Graphical Processing Units (GPU). With
the high degree of parallelism supported by the GPU, GACO is capable of
launching a large number of artificial ants to search for the target state. A novel
parallel simulation technique, utilizing partitioned navigation tracks as guides
during the search, is proposed to achieve extremely high computation efficiency
for state justification. Them present the results on a GPU platform from NVIDIA (a
GeForce GTX 285 graphics card) that demonstrate a speedup of up to 228x
compared to deterministic methods and a speedup of up to 40x over previous
state-of-the-art heuristic based serial tools.

The technique is implemented on the NVIDIA GeForce GTX 285 with 30 cores
and 8 SIMT execution pipelines per core. Them experimental results demonstrate
that the proposed GACO can achieve between one and two orders of magnitude
speedup in comparison with the state-of-the-art sequential ACO based state
justification algorithm implemented on conventional processor architecture.

The pseudo-code for the algorithm is shown in Algorithm 1. Lines marked

with * are executed on the CPU, others on the GPU.



Algorithm 1 Modified Ant Colony Optimization
1: Initialize Start_state, Best_fit *
2: Initialize trace *
3. for all N, ,,.q4s rounds *x do
4 for all N,; ;4. strides do
5 for all N,,,;. ants do
6 W = Gen_PI(Seed) /f randomly generate PI
7.
8
9

Vimp = Simulate(Start_state, W)
Fitimp = Calc_Fitness(Vimp)
: Add Vpp to Tracesmp
10: if ity > best_fit then

11: Update(Ft'tbests "fbest)

12: end if

13: end for

14:  end for

15:  Start_State = Vies * /I set guidepost for next round
16: end for

Fig.7. Modified Ant Colony Optimization

Algorithm 2 cval_kernel — evaluation kernel of OR2 gate
Input: wint *t,.;, uwint *f,., bool * flag, int id,
int in0, int inl

1: tid = threadldz.x; // get thread index

2: val_in0 = tyq[tid + ind x t];

3 val_inl =ty [tid +inl x t];

4 foaltid +id X t] = val_in0 | val_inl;

Fig.8. Evaluation kernel of OR2 gate

They evaluated GACO on a set of ISCAS89 and ITC99 benchmark designs. The
platform has them present consists of a workstation with Intel 8-core i7 3.33 GHz
CPU, 2 GB memory and one NVIDIA GeForce GTX 285 graphic card which has 30
SMs and 240 processing core with the clock speed 1476 MHz. The on-chip
memory contains 1 GB DDR3 global memory with a bandwidth of up-to 159.00
GB/s. The operating system on the host machine is a 64-bit Red Hat GNU/Linux
distribution. The NVIDIA CUDA 2.3 SDK toolkit is used for all the program

execution.

Implementation of Ant Colony Algorithm based on GPU [14]

In this paper, the ACS was applied to solve the typical combinatorial
optimization problem TSP using modern GPU parallel calculation features.

The main idea of the novel implementation mapping MMAS to GUP is to
make full use of parallel process feature and positive feedback mechanism of the
MMAS algorithm. By applying the parallel processing techniques of fragment
processor based on the SIMD, one can improve MMAS computing efficiency with
GUP’s accelerated features. Nowadays, GPU is still deficient on branch and
iterative feedback processing, so the GPU computing implements were mainly
focus on the calculation flow

They chose typical TSP example with 30 cities and 8 ants and realize MMAS
to solve TSP with CPU and GPU respectively. The parameters of MMAS are listed

below: City coordinates are shown in TABLE |

#define MAXCITY 30

int
xPos(MAXCITY]=1{41, 37, 54, 25, 7, 2, 68, T1, 54, 83, 64, 1
8, 22, 83, 91, 25, 24, 58, 71, 74, 87, 18, 13, 82, 62, 58, 45,

41,44, 4} ;

int
yPos[MAXCITY]={ 94, 84, 67, 62, 64, 99, 58, 44, 62, 69, 6
0, 54, 60, 46, 38, 38, 42, 69, 71, 78, 76, 40, 40, 7, 32, 35, 2

1, 26, 35, 50} ;

TABLE I. City Coordinates

The results show that our implements can find the optimized path length
that is 423.741. In order to test the GPU computing efficiency, we use different
iteration counts in finding the shortest path respectively, see TABLE II.

Count of GPU costs CPU costs (ms)

iteration (ms)
1000 2781 3390
2000 5218 6766
3000 7656 10141
5000 12500 16922
7000 17344 23656
10000 24531 33766

TABLE Il. Comparision of time costs in solving MMAS

The comparison of running time cost between GPU and CPU is shown in

Figure 3.
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Fig.9. Comparision of computing cost.

The novel method realized fast solution of MMAS algorithm through
constructing texture suitable to GUP processing. The experimental results show
GPGPU has good accelerated performance on large scale computing. Because the
GPU’s SIMD features are designed for graphics pipeline, it is more difficult in
realization than CPU. Our implement is suitable to GPGPU and can be used on

solving other similar computing problem.

b. Algorithm inspired by Genetic Evolution
A Comparison of Many-threaded Differential Evolution and Genetic
Algorithms on CUDA [15]

They have compared a many-threaded implementation of two nature
inspired meta-heuristics, the GA and the DE. In contrast to previous GPU
implementations of the GA and DE, the presented implementation processes each
candidate solution with many threads and generates the random numbers on the
GPU. This approach seeks to utilize the resources of the GPGPU as much as
possible.

The implementations consists of a set of CUDA-C kernels for generation of
initial population, generation of batches of pseudorandom numbers for decision
making, merger of the old and new populations, the implementation of the opera-

tions specific for each meta-heuristic, and for evaluation of candidate solutions.
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Fig.10. The flowchart of the DE implementation on CUDA.
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Fig.11. The flowchart of the GA implementation on CUDA.

To evaluate the performance of the GA and DE for minimizing the makespan
and flowtime, we have used the benchmark proposed in [18]. The simulation
model is based on the ETC matrix for 512 jobs and 16 machines. The instances of

the benchmark are classified into 12 different types of ETC matrices.

GA DE
paremeter value | parameter value
population size 64 | population size 64
mut. probability 0.01 | F 0.9
cros. probability 08 | C 0.9
selection semi elitary

TABLE IIl. GA and DE settings

ETC matrix GA DE
ThMhCc 2.34994e407  9.55294e+06
ThMhCi 1.38284e+07  3.17031e+06
ThMhCs 1.45571e+07  4.28296e+06
ThMICc 207687 189457
ThMICi 182313 788447
ThMICs 171689 104447
TIMhCc 755855 331510
TIMhCi 468615 104894
TIMhCs 493757 142368
TIMICc 6834.15 6158.24
TIMICi 5731.92 2550.79
TIMICs 5873.45 3391.38

TABLE IV. Optimization results

The average final fitness obtained for each ETC matrix by the GA and DE is
shown in Table Il. We can clearly see that the DE was able to find significantly
better schedules within the given minute. The differencies between final fitness
for the DE and GA are also illustrated in Fig. 11. Indeed this is an interesting results

that can be attributed to several reasons
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Fig.11. The flowchart of the GA implementation on CUDA.

The CUDA implementation of the DE was easier because the variant of the
algorithm that was implemented can be almost entirely expressed using matrix
vector operations. The parallelization of the GA was not so straightforward
because some parts of the algorithm (parent selection, transition from one
population to another) are not suitable for parallelization in a SIMD environment

such as the CUDA.

A Parallel Genetic Algorithm with GPU Accelerated for Large-scale MDVRP in
Emergency Logistics [16]

Routing the vehicles delivering relief supplies effectively and efficiently right
after the disaster is one of the important issues in emergency logistics. Mostly,
these kinds of problems are the MDVRP, which are NP-hard problems. When the
problem scale goes large, it is hard to find a reasonable solution rapidly enough to
meet the requirement of the emergency situation.

In this paper, The proposed a parallel Genetic Algorithm (GA) with Graphics
Processing Unit (GPU) accelerated. By assigning the computing tasks for each
chromosome to independent threads, the algorithm can process all the
operations in GA in parallel. Experimental results show that our parallel algorithm
can reduce the computing time of MDVRP to a large degree, which can improve

the efficiency and effectiveness of the decision-making process.
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Fig.12. The emergency logistic system.

The routing problem in emergency logistics is a typical MDVRP. The
emergency logistics system considered in this study is depicted in Figure 12

As with the normal genetic algorithm, our parallel genetic algorithm also
contains four steps on the whole: evolution, selection, crossover and mutation.

But some of them are modified in order to fit the parallel architecture of GPU. The

algorithm is illustrated as follow:

Routing Plan Routing Plans
Decoding Encoding

Generation

GPU Controlled

<

Fig.13. GPU accelerated parallel genetic algorithm.

In the GPU kernel, each chromosome is dispatched to one thread, and all the
genetic operations are executed in parallel. The assignment of chromosome in

GPU is as follows:
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Evaluution
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_

Fig.14. Chromosomes assignment and computing process in kernel

Table V. shows the computing time of both CPU and GPU algorithms for the

datasets with the same chromosome population size and generations. And the

speedup for different problem scale is also given. Figure 4 shows the difference of

algorithm execution time between CPU and GPU with different problem scale.

Dataset N CPU time (ms) | GPU time (ms) Splf;d'
CGW1 50 | 53674 - 155 346.28
CGW3 75 74265 163 455.61
CGW7 00 | 105075 | 172 610.90
CGWI16 200 182499 191 964.92

TABLE V. The speed-ups of them algorithm with different datasets.
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Fig.15. The comparison of time cost between CPU and GPU

The results indicate that our parallel Genetic Algorithm has an ideal speedup
ratio from 346.28 up to 964.92 with different number of demand sites from 50 to
200. Compared to CPU, it can dramatic reduce the time of vehicle routes planning
in emergency logistic. The accelerate effect is more obvious as the problem scale

becomes larger.

A Multi-GPU Implementation of a Cellular Genetic Algorithm [17]

In this work, they implement a multi-GPU cGA algo- rithm that runs entirely
on GPUs. We demonstrate that the proposed optimization technique (called cGA
MultiGPU) is quite amenable for massive parallelism to obtain larger performances.
With regarding to the CPU cGA version, the multi-GPU cGA obtains a speedup of
up to 771 and respect the version on a single GPU the time consuming is only a
17% more in the worst case. This approach offers the possibility to solve large
problem instances. All this will be shown on a benchmark of discrete and
continuous problems to claim not only for time reductions but also for numerical
advantages of this swarm intelligence algorithm.

In this study, They present a cGA algorithm running over a Description of
CUDA architecture LINVIDIA GeForce GTX 285. This GPU consists of 16 stream
multi-processors, each of wich has 8 processors, in total we have 240 processors
capable of concurrent floating point operation which can accelerate computation
many times over a CPU.

1: initialize eGA(Input_param);

2: allocate parameters of the algorithm on GPU device memory
3: for each individual in parallel do

4: individual + initializeIndividual{individual);

5: individual + evaluateIndividual(individual);

6: end for

7: while not Stop_Criterion do

8 for each individual in parallel do

9: neighbours «— calculateNeighourhood(individual);

10: parents <+ selection(neighbours);

11: offspring +— recombination(parents, p_Recombination);
12: offspring + mutation(offspring, p-Mutation);

13: evaluateIndividual(offspring);

14: replacement(individual, offspring);

15: end for

16: end while

Fig.16. Pseudocode of Cellular GA on a GPU

They implementation of a cGA algorithm for a single GPU (called cGA GPU)

exploits the inherent parallelism of a GPU using a direct mapping between the



population structure and the threads of the GPU. The algorithm have show on

Figure 16 and Multi-GPU algorithm show on Figure 17.

initialize cGA(Input_param);

allocate parameters of the algorithm in each GPU device memory

pop < initializePopulationInCPU(pop);

pop <+ evaluatePopulationInCPU(pop);

calculateSubPopulationsInCPU(pop);

for each subPopulation; do

borderline; +— obtainBorderline(subPopulation;);

end for

while not Stop_Criterion do

10: neighbours +— calculateNeigbourhoodOnGPU(individual);

11: parents +— selectionOnGPU(neighbours);

12: offspring < recombinationOnGPU(parents, p_Recombination);

13: offspring +— mutationOnGPU(offspring, p_Mutation};

14: evaluateOnGPU(offspring);

15: replacementOnGPU (individual, offspring);

16: copy back to CPU the borderline of each subPopulation allocated
on a GPU;

17: send borderlines allocated in CPU to the specific GPU for use in
the next iteration;

8: end while

bl A

—_

Fig.17. Pseudocode of Cellular GA on a multi-GPU

They selected for tests the following problems, three discrete optimization
problems: Colville Minimization, Error Correcting Codes Design Problem (ECC) and
Massively Multimodal Deceptive Problem (MMDP), and three continuous ones,
Shifted Griewank function, Shifted Rastri- gin function and Shifted Rosenbrock

function. For the last three problems we decided to use instances of size 100 II.

Population Size | Colville ECC MMDP | Rastrigin | Rosenbrock | Grienwak
Ex B 8992 9.730 10.084 10.391 0.500 10.020

16 = 16 29.433 31.858 32.485 32.463 33.831 32.964

32 = 32 63.503 68.419 69.789 68.810 70.982 T0.421

64 = 64 121.991 124,306 123.909 125,604 122,400 123.007

128 = 128 | 220,593 | 220419 | 219.789 | 218.810 218.982 220.527
256 x 256 | 411308 | 412413 | 413983 | 410.800 412.925 412.401
512 % 512 | 752.860 | 771.651 | 767.166 | 767.010 771.612 770.910

TABLE VI. AVERAGE SPEEDUP OBTAINED WITH DIFFERENT POPULATION SIZE
FOR BETWEEN CGA MULTIGPU AND CPU CGA

Population Size | Colville | ECC | MMDP | Rastrigin | Rosenbrock | Grienwak
Bx8 0.570 | 0.666 0.850 0.760 0714 0.807

16 x 16 0717 | 0.737 0700 0.655 0.595 0.585
32 x 32 0718 | 0.728 0.777 0.804 0.732 0.768
64 x 64 0.683 | 0.818 0.707 0.638 0.634 0.583
128 »x 128 0.761 | 0.630 0.854 0.862 0.806 0.813
236 »x 256 0.810 | 0.855 0,847 0.840 0911 0.835
512 x 512 0.871 | 0.871 0.917 0884 (.886 0.858

TABLE VII. AVERAGE SPEEDUP OBTAINED WITH DIFFERENT POPULATION SIZE
BETWEEN CGA GPU AND CGA MULTIGPU

In Table VI, they present the resulting speedups for each problem. This value
is the average time of the cGA algorithm in CPU divided by the average time of the
cGA multiGPU. Thus, a value over 1.0 means a more efficient performance of the
multi-GPU over the CPU. The results of them tests show that the speedup ranges
from 8 to 771. They can observe that the speedup increases when the population
size is larger. Another interesting observation is that there is not significant
difference between the speedup of the discrete and continuous domains. This
indicates that the multi-GPU approach is effective to evaluate problem instances
of both domains.

Now, They analyze the speedup resulting from comparing the execution time

between the cGA GPU and cGA multiGPU (showed in Table VII).

IV. COMPARISION

Ant

Ref Problems Modified Languages Case Study
[12] Travelling Salesman Problem No MATLAB ~ MMAS

[13] ISCAS89 and ITC99 Yes C++ N/A

[14] Travelling Salesman Problem No C++ MMAS

GA

Ref Problems Modified GA GPU

[15] ETC Matrix Yes Single-GPU
[16] MDVRP Yes Single-GPU
[17] Colville, ECC, MMDP, Yes Multi-GPU

Rastrigin, Rosenbrock,

Grienwak
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