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I. INTRODUCTION 

II. LITERATURE REVIEW 
Any Colony Optimization (ACO) [1] 

ACO มีลักษณะการหาอาหารของมด ซึ่งเป็นวิวัฒนาการของพฤติกรรมทางสังคม (Social 
Behavior) แทนที่จะเป็นทางด้านพันธุกรรม ACO ถูกคิดค้นโดย  Dorigo และคณะ [1] ซึ่งเลียน 
แบบพฤติกรรมการหาอาหารของมดโดยค้นการหาเส้นทางที่สั้นที่สุดระหว่างรังกับแหล่งอาหาร 
โดยใช้ฟีโรโมน )Pheromon ) ที่มดวางไว้ระหว่างทางเพื่อใช้ในการสื่อสารทางอ้อมกับมดตัวอ่ืน ใน
ฝูง ในระหว่างการเดินทางหากเจอสิ่งกีดขวางมดแต่ละตัวจะตัดสินใจเลือกเส้นทางเลี่ยงอย่างสุ่ม 
สมมติว่ามีสองเส้นทางที่เลี่ยงได้ในช่วงแรกปริมาณการ ระเหยของ Pheromone บนสองเสน้ทาง 
จะมีปริมาณที่เท่ากัน แต่เม่ือเวลาผ่านไป เส้นทางที่สั้นกว่าจะมีปริมาณ การระเหยของฟีโรโมน 
ที่มากกว่า เพราะมดจะเลือกเส้นทางที่มีปริมาณ Pheromone มากกว่าหรือเส้นทางที่สั้นที่สุด 
 
Genetic Algorithm [1] 

เป็นอัลกอริธึมด้านวิวัฒนาการแบบแรก และถูกคิดค้นโดย Holland [2] ซึ่งได้รับ แรง
บันดาลใจมาจากทฤษฎีของ Darwin เกี่ยวกับการวิวัฒนาการอัลกอริธึม GA นี้ได้ร้บความนยิม 
อย่างมากในแวดวงปัญญาประดิษฐ์ (Artificial Intelligence) และได้ถูกประยุกต์ใช้กับปญัหา 
หลายแขนง เช่น ในวทิยาศาสตรแ์ละวศิวกรรมศาสตร ์

ข้ันตอนการทํางานของ GA เริ่มด้วย การสร้างประชากรของคําตอบหรือโครโมโซมข้ึนมา 
แล้วคํานวณหาค่าฟังก์ชัน ความเหมาะสม (Fitness Function) ของประชากรแต่ละตัวซึ่งเป็นข้ัน 
ตอนการถอดรหัสโครโมโซม เพื่อคํานวณ หาค่าความเหมาะสมตามฟังก์ชันเป้าหมายหลังจากนั้น 
จะเลียนแบบพฤตกรรมทางพนัธุกรรมในธรรมชาติดังนั้นโครโมโซมที่มีค่าความเหมาะสมสูงจะแลก 
เปลี่ยนข้อมูลซึ่งกันและกันเพื่อสร้าง โครโมโซมใหม่ที่พัฒนาตัวเองผ่านกระบวนการสลับสายพันธุ์ 
(Crossover) และการกลายพันธุ์ (Mutation) ดังแสดง ในรูปที ่1 โครโมโซมลูกหลาน (Offspring 
Chromosome) จะถูกตรวจสอบ วา่ให้คําตอบที่ดีกว่าโครโมโซมตัวที่แย่ที่สุดในประชากรหรือไม่ ถ้
าดีกว่ามันจะแทนที่โครโมโซมตัว ที่แย่ที่สุด ข้ันตอนการค้นหาดังกล่าวจะถูกทําซ้ําไปซ้ํามา 
(Iterative Process) จนกระทั่งตรงกับ เง่ือนไขการหยุดการทํางานเพื่อให้ได้โครโมโซมตัวที่ให้ค่า 
ความเหมาะสมที่ดีที่สุด หรือผลลัพธ์ใกล้เคียงกับค่าที่ดีที่สุด (Optimum Solution) 
 

 
Fig. 1. Sample of Crossover and Mutation 

 

 
Fig. 2. Local Search of Crossover and Mutation 

 

Parallel Computing 

Parallel computing is a form of computation in which many calculations are 
carried out simultaneously,[5] operating on the principle that large problems can 
often be divided into smaller ones, which are then solved concurrently ("in 
parallel"). There are several different forms of parallel computing: bit-
level, instruction level , data, and task parallelism.  

Parallelism has been employed for many years, mainly in high-performance 
computing, but interest in it has grown lately due to the physical constraints 
preventing frequency scaling.[6] As power consumption (and consequently heat 
generation) by computers has become a concern in recent years,[7] parallel 

computing has become the dominant paradigm in computer architecture, mainly 
in the form of multicore processors.[8] 

Parallel computers can be roughly classified according to the level at which 
the hardware supports parallelism, with multi-core and multi-processor computers 
having multiple processing elements within a single machine, while clusters, MPPs, 
and gridsuse multiple computers to work on the same task. Specialized parallel 
computer architectures are sometimes used alongside traditional processors, for 
accelerating specific tasks. 

Parallel computer programs are more difficult to write than sequential 
ones,[9] because concurrency introduces several new classes of potential software 
bugs, of which race conditions are the most common.  

Communication and synchronization between the different subtasks are 
typically some of the greatest obstacles to getting good parallel program 
performance. The maximum possible speed-up of a program as a result of 
parallelization is known as Amdahl's law 
 
CUDA Parallel Computing Platform [10] 

NVIDIA® CUDA™ technology leverages the massively parallel processing 
power of NVIDIA GPUs. The CUDA architecture is a revolutionary parallel 
computing architecture that delivers the performance of NVIDIA’s world-renowned 
graphics processor technology to general purpose GPU Computing. Applications 
that run on the CUDA architecture can take advantage of an installed base of over 
one hundred million CUDA-enabled GPUs in desktop and notebook computers, 
professional workstations, and supercomputer clusters.  

With the CUDA architecture and tools, developers are achieving dramatic 
speedups in fields such as medical imaging and natural resource exploration, and 
creating breakthrough applications in areas such as image recognition and real-
time HD video playback and encoding.  

CUDA enables this unprecedented performance via standard APIs such as 
the soon to be released OpenCL™ and DirectX® Compute, and high level 
programming languages such as C/C++, Fortran, Java, Python, and the Microsoft 
.NET Framework. 

The CUDA Architecture consists of several components, in the green boxes  
1. Parallel compute engines inside NVIDIA GPUs  
2. OS kernel-level support for hardware initialization, configuration, etc.  
3. User-mode driver, which provides a device-level API for developers  
4. PTX instruction set architecture (ISA) for parallel computing kernels and 
functions 
 
The CUDA Architecture consists of several components, in the green boxes below: 

 



Fig.3. CUDA Architecture 
 

Travelling salesman problem 

The travelling salesman problem (TSP) or travelling salesperson problem asks 
the following question: Given a list of cities and the distances between each pair 
of cities, what is the shortest possible route that visits each city exactly once and 
returns to the origin city? It is an NP-hard problem in combinatorial optimization, 
important in operations research and theoretical computer science.  

The problem was first formulated in 1930 and is one of the most intensively 
studied problems in optimization. It is used as a benchmark for many optimization 
methods. Even though the problem is computationally difficult,[11] a large 
number of heuristics and exact methods are known, so that some instances with 
tens of thousands of cities can be solved.  

The TSP has several applications even in its purest formulation, such as 
planning, logistics, and the manufacture of microchips. Slightly modified, it appears 
as a sub-problem in many areas, such as DNA sequencing. In these applications, 
the concept city represents, for example, customers, soldering points, or DNA 
fragments, and the concept distance represents travelling times or cost, or a 
similarity measure between DNA fragments. In many applications, additional 
constraints such as limited resources or time windows make the problem 
considerably harder. TSP is a special case of the travelling purchaser problem.  

In the theory of computational complexity, the decision version of the TSP 
(where, given a length L, the task is to decide whether any tour is shorter than L) 
belongs to the class of NP-complete problems. Thus, it is likely that the worst-
case running time for any algorithm for the TSP increases exponentially with the 
number of cities. 
 

III. ALGORITHMS 
a. Algorithm inspired by Ant 

A Parallel Ant Colony Optimization Algorithm with GPU-

Acceleration Based on All-In-Roulette Selection [12] 
This paper presents and implements a parallel MAX-MIN Ant System (MMAS) 

based on a GPU+CPU hardware platform under the MATLAB environment with 
Jacket toolbox to solve Traveling Salesman Problem (TSP). The key idea is to let 
all ants share only one pseudorandom number matrix, one pheromone matrix, 
one taboo matrix, and one probability matrix. We also use a new selection 
approach based on those matrices, named AIR (All-In-Roulette). The main 
contribution of this paper is the description of how to design parallel MMAS based 
on those ideas and the comparison to the relevant sequential version. The 
computational results show that our parallel algorithm is much more efficient 
than the sequential version. 

Fig.4 shows the experimental results when the matrix size is from 3×3 to 
2500×2500 

 
Fig.4. Speedup of GPU-to-CPU in multiplication between three matrices 
Fig.5 gives the comparison of overall computation time between the 

GPU+CPU and CPU implementation of the MMAS algorithm for 9 TSP instances. 
Due to the tiny percentage of initialization, all the tests are limited to 50 iterations. 
The GPU can only work when the data is moved from CPU to it; the movement 
from GPU to CPU is also necessary. The absolute transfer time is linearly 

dependent on matrix size, and is with a small initialization penalty (less than a 
hundred microseconds). 
 

 
Fig.5. Overall Speedup of GPU+CPU to CPU. Running from pr76 to pr1002. 

 
Fig.6 shows that within our parallel MMAS algorithm, the percentage of time-

consuming in data transfer increases steadily with the growth of the number of 
TSP nodes. For matrix size in the range 0.25-1.25MB, the transfer rate reaches the 
peak, which is above 3.5GB/s 

 

 
Fig.6. Percentage of time-consuming in data transfer within the parallel MMAS 

algorithm. Running from pr76 to pr1002. 
 

The results indicate that, when the TSP nodes are approximately less than 
450, the GPU-to-CPU speedup increases steadily with the increase of number of 
TSP nodes. After the number of nodes reaches 450, the growth of speedup slows 
down significantly. 

 

Utilizing GPGPUs for Design Validation with a Modified Ant Colony 

Optimization [13] 

This paper, them propose a novel parallel state justification tool, GACO, 
utilizing Ant Colony Optimization (ACO) on Graphical Processing Units (GPU). With 
the high degree of parallelism supported by the GPU, GACO is capable of 
launching a large number of artificial ants to search for the target state. A novel 
parallel simulation technique, utilizing partitioned navigation tracks as guides 
during the search, is proposed to achieve extremely high computation efficiency 
for state justification. Them present the results on a GPU platform from NVIDIA (a 
GeForce GTX 285 graphics card) that demonstrate a speedup of up to 228× 
compared to deterministic methods and a speedup of up to 40× over previous 
state-of-the-art heuristic based serial tools. 

The technique is implemented on the NVIDIA GeForce GTX 285 with 30 cores 
and 8 SIMT execution pipelines per core. Them experimental results demonstrate 
that the proposed GACO can achieve between one and two orders of magnitude 
speedup in comparison with the state-of-the-art sequential ACO based state 
justification algorithm implemented on conventional processor architecture. 

The pseudo-code for the algorithm is shown in Algorithm 1. Lines marked 

with *  are executed on the CPU, others on the GPU. 
 



  
Fig.7. Modified Ant Colony Optimization 

 

 
Fig.8. Evaluation kernel of OR2 gate 

 
They evaluated GACO on a set of ISCAS89 and ITC99 benchmark designs. The 

platform has them present consists of a workstation with Intel 8-core i7 3.33 GHz 
CPU, 2 GB memory and one NVIDIA GeForce GTX 285 graphic card which has 30 
SMs and 240 processing core with the clock speed 1476 MHz. The on-chip 
memory contains 1 GB DDR3 global memory with a bandwidth of up-to 159.00 
GB/s. The operating system on the host machine is a 64-bit Red Hat GNU/Linux 
distribution. The NVIDIA CUDA 2.3 SDK toolkit is used for all the program 
execution. 

 
Implementation of Ant Colony Algorithm based on GPU [14] 

In this paper, the ACS was applied to solve the typical combinatorial 
optimization problem TSP using modern GPU parallel calculation features.  

The main idea of the novel implementation mapping MMAS to GUP is to 
make full use of parallel process feature and positive feedback mechanism of the 
MMAS algorithm. By applying the parallel processing techniques of fragment 
processor based on the SIMD, one can improve MMAS computing efficiency with 
GUP’s accelerated features. Nowadays, GPU is still deficient on branch and 
iterative feedback processing, so the GPU computing implements were mainly 
focus on the calculation flow 

They chose typical TSP example with 30 cities and 8 ants and realize MMAS 
to solve TSP with CPU and GPU respectively. The parameters of MMAS are listed 
below: City coordinates are shown in TABLE I 
 

 
TABLE I. City Coordinates 

 

The results show that our implements can find the optimized path length 
that is 423.741. In order to test the GPU computing efficiency, we use different 
iteration counts in finding the shortest path respectively, see TABLE II. 
 

 
TABLE II. Comparision of time costs in solving MMAS 

 
The comparison of running time cost between GPU and CPU is shown in 

Figure 3. 

 
Fig.9. Comparision of computing cost. 

 
The novel method realized fast solution of MMAS algorithm through 

constructing texture suitable to GUP processing. The experimental results show 
GPGPU has good accelerated performance on large scale computing. Because the 
GPU’s SIMD features are designed for graphics pipeline, it is more difficult in 
realization than CPU. Our implement is suitable to GPGPU and can be used on 
solving other similar computing problem. 

 

b. Algorithm inspired by Genetic Evolution 
A Comparison of Many-threaded Differential Evolution and Genetic 

Algorithms on CUDA [15] 

They have compared a many-threaded implementation of two nature 
inspired meta-heuristics, the GA and the DE. In contrast to previous GPU 
implementations of the GA and DE, the presented implementation processes each 
candidate solution with many threads and generates the random numbers on the 
GPU. This approach seeks to utilize the resources of the GPGPU as much as 
possible. 

The implementations consists of a set of CUDA-C kernels for generation of 
initial population, generation of batches of pseudorandom numbers for decision 
making, merger of the old and new populations, the implementation of the opera- 
tions specific for each meta-heuristic, and for evaluation of candidate solutions. 
 



 
Fig.10. The flowchart of the DE implementation on CUDA. 

 

 
Fig.11. The flowchart of the GA implementation on CUDA. 

 
To evaluate the performance of the GA and DE for minimizing the makespan 

and flowtime, we have used the benchmark proposed in [18]. The simulation 
model is based on the ETC matrix for 512 jobs and 16 machines. The instances of 
the benchmark are classified into 12 different types of ETC matrices. 

 

 
TABLE III. GA and DE settings 

 

 
TABLE IV. Optimization results 

 
The average final fitness obtained for each ETC matrix by the GA and DE is 

shown in Table II. We can clearly see that the DE was able to find significantly 
better schedules within the given minute. The differencies between final fitness 
for the DE and GA are also illustrated in Fig. 11. Indeed this is an interesting results 
that can be attributed to several reasons 

 

 
Fig.11. The flowchart of the GA implementation on CUDA. 

The CUDA implementation of the DE was easier because the variant of the 
algorithm that was implemented can be almost entirely expressed using matrix 
vector operations. The parallelization of the GA was not so straightforward 
because some parts of the algorithm (parent selection, transition from one 
population to another) are not suitable for parallelization in a SIMD environment 
such as the CUDA. 
 
A Parallel Genetic Algorithm with GPU Accelerated for Large-scale MDVRP in 

Emergency Logistics [16] 

Routing the vehicles delivering relief supplies effectively and efficiently right 
after the disaster is one of the important issues in emergency logistics. Mostly, 
these kinds of problems are the MDVRP, which are NP-hard problems. When the 
problem scale goes large, it is hard to find a reasonable solution rapidly enough to 
meet the requirement of the emergency situation. 

In this paper, The proposed a parallel Genetic Algorithm (GA) with Graphics 
Processing Unit (GPU) accelerated. By assigning the computing tasks for each 
chromosome to independent threads, the algorithm can process all the 
operations in GA in parallel. Experimental results show that our parallel algorithm 
can reduce the computing time of MDVRP to a large degree, which can improve 
the efficiency and effectiveness of the decision-making process. 
 



 
Fig.12. The emergency logistic system. 

 
The routing problem in emergency logistics is a typical MDVRP. The 

emergency logistics system considered in this study is depicted in Figure 12 
As with the normal genetic algorithm, our parallel genetic algorithm also 

contains four steps on the whole: evolution, selection, crossover and mutation. 
But some of them are modified in order to fit the parallel architecture of GPU. The 
algorithm is illustrated as follow: 
 

 
Fig.13. GPU accelerated parallel genetic algorithm. 

 
In the GPU kernel, each chromosome is dispatched to one thread, and all the 

genetic operations are executed in parallel. The assignment of chromosome in 
GPU is as follows: 

 
Fig.14. Chromosomes assignment and computing process in kernel 

 
Table V. shows the computing time of both CPU and GPU algorithms for the 
datasets with the same chromosome population size and generations. And the 

speedup for different problem scale is also given. Figure 4 shows the difference of 
algorithm execution time between CPU and GPU with different problem scale. 
 

 
TABLE V. The speed-ups of them algorithm with different datasets. 

 

 
Fig.15. The comparison of time cost between CPU and GPU 

 
The results indicate that our parallel Genetic Algorithm has an ideal speedup 

ratio from 346.28 up to 964.92 with different number of demand sites from 50 to 
200. Compared to CPU, it can dramatic reduce the time of vehicle routes planning 
in emergency logistic. The accelerate effect is more obvious as the problem scale 
becomes larger. 
 
A Multi-GPU Implementation of a Cellular Genetic Algorithm [17] 

In this work, they implement a multi-GPU cGA algo- rithm that runs entirely 
on GPUs. We demonstrate that the proposed optimization technique (called cGA 
MultiGPU) is quite amenable for massive parallelism to obtain larger performances. 
With regarding to the CPU cGA version, the multi-GPU cGA obtains a speedup of 
up to 771 and respect the version on a single GPU the time consuming is only a 
17% more in the worst case. This approach offers the possibility to solve large 
problem instances. All this will be shown on a benchmark of discrete and 
continuous problems to claim not only for time reductions but also for numerical 
advantages of this swarm intelligence algorithm. 

In this study, They present a cGA algorithm running over a Description of 
CUDA architecture ￼NVIDIA GeForce GTX 285. This GPU consists of 16 stream 
multi-processors, each of wich has 8 processors, in total we have 240 processors 
capable of concurrent floating point operation which can accelerate computation 
many times over a CPU. 

 
Fig.16. Pseudocode of Cellular GA on a GPU 

 
They implementation of a cGA algorithm for a single GPU (called cGA GPU) 

exploits the inherent parallelism of a GPU using a direct mapping between the 



population structure and the threads of the GPU. The algorithm have show on 
Figure 16 and Multi-GPU algorithm show on Figure 17. 

 

 
Fig.17. Pseudocode of Cellular GA on a multi-GPU 

 
They selected for tests the following problems, three discrete optimization 

problems: Colville Minimization, Error Correcting Codes Design Problem (ECC) and 
Massively Multimodal Deceptive Problem (MMDP), and three continuous ones, 
Shifted Griewank function, Shifted Rastri- gin function and Shifted Rosenbrock 
function. For the last three problems we decided to use instances of size 100 II. 
 

 
TABLE VI. AVERAGE SPEEDUP OBTAINED WITH DIFFERENT POPULATION SIZE 

FOR BETWEEN CGA MULTIGPU AND CPU CGA 
 

 
TABLE VII. AVERAGE SPEEDUP OBTAINED WITH DIFFERENT POPULATION SIZE 

BETWEEN CGA GPU AND CGA MULTIGPU 
 

In Table VI, they present the resulting speedups for each problem. This value 
is the average time of the cGA algorithm in CPU divided by the average time of the 
cGA multiGPU. Thus, a value over 1.0 means a more efficient performance of the 
multi-GPU over the CPU. The results of them tests show that the speedup ranges 
from 8 to 771. They can observe that the speedup increases when the population 
size is larger. Another interesting observation is that there is not significant 
difference between the speedup of the discrete and continuous domains. This 
indicates that the multi-GPU approach is effective to evaluate problem instances 
of both domains.  

Now, They analyze the speedup resulting from comparing the execution time 
between the cGA GPU and cGA multiGPU (showed in Table VII). 

 

IV. COMPARISION 

Ant 
Ref Problems  Modified Languages Case Study 

[12] Travelling Salesman Problem No MATLAB MMAS 
[13] ISCAS89 and ITC99  Yes C++ N/A  
[14] Travelling Salesman Problem No C++ MMAS 

 
GA   

Ref Problems  Modified GA GPU 

[15] ETC Matrix  Yes  Single-GPU 
[16] MDVRP   Yes  Single-GPU 
[17] Colville, ECC, MMDP,  Yes  Multi-GPU 
      Rastrigin, Rosenbrock,  
      Grienwak 
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