Survey of solving TSP for by Ant Systeifabu
Searcl andGenetic alaorithn

Abstract—Ant System(AS) ,Tabu Search (TS)
and Genetic Algorithm (GS) are the general
algorithm to solve Traveling Salmeman
Problem(TSP). In this paper just compare
between AS , TS and GS for find iteration and
time to solve the problem.

[. INTRODUCTION

The Traveling Saleman Problem (TSP) is a general
problem for testing any algorithm, however , no
one can confirm that it's have some algorithm to
solve TSP by short time and shortest-path. Ant
System(AS) , Tabu Search (TS) and Genetic
Algorithm (GA) are the most useful algorithm for

solve this problem, then, we should use them to
solve it because if we can confirm that what the
best algorithm for solving TSP.

2. Review on recent research in algorithm for
solving TSP

2.1 Ant System

Ant System (AS)[1] was firstly proposed
by three Italy scholars in 1991, Dorigo, Colorndan
Maniezzo, and has received increasing attention
from researchers, having been used to solve many
difficult problems in optimization of discrete
systems. It is a bionic optimization algorithm whic
simulated intelligence behavior of ant colony in
insect kingdom. It has some merits such as strong
robustness, distributed computation and the use of
constructive greedy heuristic , as a novelty
optimization algorithm, not liked Genetic
Algorithm and Simulated Annealing Algorithm,
ACA has not formed systematic analysis approach
and the solid mathematic foundation, many theory
qguestions wait for further studying, for example,
long the search time, slow convergent speed and
low searching efficiency and cannot expand the
hunting zone etc. In view of these flaws, in recent
years the domestic and foreign scholars proposed
the massive corrective methods to the ant colony
algorithm, for example, Max-Min Ant System
(MMAS)[2] was put forwarded by T. Stutzle and
HH. Hoos, and the Best-Worst Ant
System(BWAS)[3] proposed by literature. These
improvement algorithms have played a certain
promotion to enhance the performance of ant
system. In this survey, surveyors are classifyilg) A
in to three groups that used to solve TSP

Classification of Ant System which used to solve
TSP

There are many researches that use varies
way of AS in solving TSP, some are improved
from the main Ant Colony Optimization (ACO)[4],
and some are use a hybrid algorithm between ACO
and other genetic algorithms. In this survey,
represent three groups of AS which base on

behavior of researching methods ; Improved AS,
Max-Min  Ant System(MMAS), Ant Colony
System(ACS).

A. Ant System (AS)

As mentioned above, AS is the first ACO
algorithm presented, and it is the original versidn
various ant algorithms as well. An iteration is
defined as the interval in (t, t+1) during whicltlea
of the m ants constructs a solution. In other words
every ant traversals all of the n cities at each
iteration. AS together with other ant algorithms
employs the tabu table to record the already wsite
cities of an iteration in order to obtain feasible
answers. In the construction of a solution, ants
choose the next city to be visited via certain cear
strategy which is a stochastic mechanism. When
ant k is in city i, the probability of going to gif is
given by:

a

8

T
ity . .
——— if j&tabu,,
Eo_ @B "
Py = Z[embnkr?[n“' k )
0 otherwise,

where taby is the tabu table of ant k which is
comprised of the cities that have been visitechén t
current iteration. The parametexsand B control
the relative importance of the pheromaperersus
the visibility n;. The visibility represents the
heuristic information, which is given by:
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where ¢ denotes the distance between city i and
city j. This transition rule is also shared by athe
algorithms. After each iteration, the pheromaije
linked to the path connecting city i and j, is udh
according the following formula:

ry(f+1):(1—p)-rg(r)+ZAr:, (3)
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wherep is the evaporation rate) is the number of

i
ants, and7% is the quantity of pheromone laid on
path{,j) by antk:



i Jg if ant k used path(i, j) in its tour,
Aty = 1 L (

0 otherwise,

whereQ is a constant antl is the tour length of
antk.

2.2 Moderate Ant System (MAS)

MASI5] is a improve version based on
AS, differs from AS only in search strategy (i.e.,
transition rule). The pheromone concentration
determines the choices of ants in real world, while
in ACO algorithms combination of pheromone and
visibility determines the choices of ants. Hence,
infomatiory is used to represent the integrated
factors on the path from city to city j, and
infomation is given by:

infomation, =T, .

Drawing on the search strategy of
Monomorium ant species, the new transition rule
should make the ants tend to select paths with
moderateinformation instead of too much or too
little information Suppose that ant k is at city i at
stept of an iteration. When selecting the next city
as part of the solution, akthasn-t adjacent cities
available. According to Figure 3, from city i's poi
of view, theinformationvalues on thex-t adjacent
paths can be regarded as a stochastic variable
follow a normal distributiomN(«,62) sincen in TSP
is usually a big enough number. The parameters of
N(u,02) are estimated as follow:
infomation, ,
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In addition, attraction; is defined as

follows:
1 _ linfoy =)
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1 0 otherwise,

which denotes the attraction of path from

city i to cityj for the ants in MAS. If lek be an ant
located at cityi, qO€[0, 1] (default is 0.5 in MAS)
be a parameter, amga random value in [0, 1], then
the next cityj is selected according to the following
formula:
If g<q0:

i [l if j=argmax

Jetabu, ATTTrATION,

U .
lO otherwise,

else ¢ > q0) and (1) is used.

An Adaptive Dynamic Ant System Based on
Acceleration for TSP (ADAS)

[6] It is well known the pheromone in
cities decide ants’ routing selections. So the

parameters’ values that affect the pheromone are
the key. In AS, there are many parameters such as
a, B, p, Q and ma affects the global best solutions
to get and3 does the convergence spepdQ and
m affects both of the global best and convergence
speed but are not discussed in this paper. In ACS,
they are const and isolated in algorithm processing
The parameters’ static and isolatism are the key
factors that the global best solution is hard tivar
an simulation time are very large in ACS. So in the
following part, we narrate a method to make the
parameters interrelated in order to get the best
balance between the global best and convergence
speed.
Transition probability
Each ank can probabilistically decide the
next city to move to, according to formula :
77 0en 0 @)
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Wherea(t) is the heuristic factor an(t)

is the expected heuristic factor of cytjeand they
are defined as the following formula. The other
parameters are defined as above.
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WhereZ=1/t which ensures that the larger
t quantity the greater changgt) and B(t) haveto
get better solution
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Formula (8) shows that the ability of the
global best should be enhanced and the
convergence speed should be deduced when
Eo(t)<AE;, and the aim is opposite when
Eo(t)>AE,.
Global pheromone update

The pheromone trails update is modified
as the following formula.

T, (f+ n)=p,{t+ n'}z’ﬁ (1) +4_‘\.1'U.

else

(10)
Where:
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Where po(0<pp<l) is a user-defined
parameter, and the other variables are defined as
above mentioned.
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[Qi_; (t+n)/Ly. if the k —th ant walks along
Ak the routing(1, j) in its tour
£ Pa—
¢ during time mterval(t.t + n)

‘_O_ otherwise
Qj(t+n) will be changed on theey(t) of
routing (i,j),and given by the following formula :
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Where:2=1/dij, n is the city quantity.

The complexity of the ADAS is
O(NCerfem) if we stop the algorithm after NC
cycles. In fact step 1 is G¢éh m), step 2 is O(m),
step 3 is O(frm), step 4 is O(n2+m), step5 is €¥n
step 6 is O(n'm). Since we have experimentally
found a linear relation between the number of
towns and the best number of ants, the complexity
of the algorithm is O(NCs}. So the complexity of
the ADAS is as same as the AS.

2.3 Solving the traveling salesman problem
using cooperative genetic ant systems (CGAS)
[7]Unlike those hybrid intelligent ACO
algorithms proposed previously, in which GA or
PSO played only a partial role in fine tuning the
parameters for accelerating ACO convergence, we
here propose a new algorithm that is designed to
execute both AS and GA concurrently and
cooperatively. This algorithm maximizes the
advantages offered by both AS and GA
independently, which provides a better chance in
reaching the global optimal solutions to TSPs. A
generic expression of CGAS is given in following
Algorithm :

Set parameters; initialize pheromone trails

Construct FirstAntSolutions (FAS) by AS
Initialize GAusing FAS
while termination condition not met do

Construct NewAntSolutions (NAS) by AS

TA

from NAS and NAG

Get NewAntGeneration (NAG) by
Select NewBestSolution (NES)
Update Pheromones

endwhile

Terminate with NBS as the solution

Although this generic algorithm looks
simple, it requires a good understanding of some
key concepts adopted in this algorithm which differ
CGAS from others. Firstly, the strategy of selegtin
the next city for an ant to visit is based on naltur
ordering and selection. In each city, we create a
sorted list of a certain number of cities that dre
closest to it. In a natural selection process,oaesl
city has a higher probability to be chosen for the
next move. To make the use of this list more

efficient, this sorted list should only contain a
certain number of closest cities. This constan) (C
depends on the number (n) of cities for a particula
TSP, and not exclusive, a rough guide would be C
= (5% - 15%) * n.

For ant k in city i to select the next city |
to visit, ant k will firstly consult the sorted tis(i)
of city i to select the closest city from it. Ifishcity
is in set &, it will be the next city to visit. If c(i)
has no intersection with,Sthen the traditional
mechanism of AS is used to select a city outside th
list. This selection process is summarized as:

j= {min c(i) if j € §,. argmax Tg-:];fj’.orhemfse.

Since this natural ordering and selection
strategy is adopted for choosing the next city to
visit during iteration, local pheromone update @s n
longer required.

The solution (sequence of cities visited) of
each ant’s first iteration constitutes a compornt
the initial population for GA. Afterwards AS and
GA are executed concurrently in the while loop. In
the end of each iteration, the two best solutions
with the shortest length of tour from both AS,{4
and GA (Ges) are compared to determine the
shortest path for the round. Whichever is shoiter,
is used to replace the other. This keeps the best
solution of each round evolving during the entire
process.

B. Max-Min Ant System (MMAS)

MMAS|2] differs from the AS in two
main aspects: only the best ant is allowed to wdat
the pheromone trails, and the value of pheromone
on the paths is bound. The pheromone update
function is implemented as follows:

TU(Hl):[(lf,o)ArU.(r)JrAr;‘“’"]:‘”_’" ,

wherermaxandtmin are the upper bound
and lower bound of the amount of pheromone on

a
the paths, respectively; the operat [-T]g;. is
defined as follows:
J(: if x>a,
[x]; =12 if x <.
lkx otherwise,

1 S
and Al’,f“ is:

. — if the global best solution contains path(i. j),
Aty =11

| 0 otherwise.

Lpestis the length of the tour obtained by
the best ant. It can be the best solution fountthén
current iteration—iterationbestlLy, or the best
solution found since the beginning of the
algorithm—global-best| 4, , or a combination of
both (subject to the algorithm designer’s decision)

With respect to the upper and lower
bounds on the pheromone valugg,andz,,tend

best




to be set empirically and are determined on a case-
by-case basis. Nevertheless, there are still some
guide lines that have been proposed for defining
Tmax and zmin, on the basis of analytical
considerations.

2.4 A Novel Max-Min Ant System Algorithm
(NMMAS)

In MMAS [2], the upper bound is set
to an estimate of the asymptotically maximum
value, and the lower boung, is set tcet.x Where
0 <g <1. For TSP, They are set by

1 1
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Whereavg = n/2, pyest iS significantly higher than
0.5.
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From formula above, it can be found that
the upper and lower bounds of pheromone trail are
relevant to the value of objective function. They
have to reset each time when a new global-best
solution is found. It is one of inconvenience for
practical problem. Another is using only one
solution for the pheromone update. By this choice,
solution elements which frequently occur in the
best found solutions get a large reinforcement, tha
is, it is useful the ants exploit the solution spac
But, it limits the capabilities of exploration dset
search concentrate too fast. It may lead to trap in
poor quality solutions. So we introduce a novel
Max-Min ant system, called NMMAS[8], to
overcome the shortage of MMAS.

Pheromone Trail Limits

In experiment, we find out that the
pheromone trail value can be independence of the
value of objective function. But, to achieve better
performance it has something to do with the
heuristic value. If the gap between the pheromone
trail value and the heuristic value is too lardes t
role of heuristic value in random proportional rule
will be lose. The heuristic value in TSP is defined
as the inverse of distance. So in NMMAS, one
random sampling is needed to obtain the length of
tour, and the interval of pheromone is determined.

From formula above, the ratio of the upper
bound and the lower bound is over 1000. So the
lower bound of pheromone trail is set tQTyqx
wherem, is a real constant number, O < 1.
Then, if upper bound which has nothing to do with
the value of objective function, then the limit of
pheromone trail value is also too. In practice, the
length of tour is corresponded to one interval. At
the beginning of algorithm, random sampling is
used to get the length. Then, we can choice the

interval though the range of length. For examgle, i
the lengthL <= 2000, thenta = 0.1; if 2000 <L
<= 20000,7ax = 0.01; ...

Pheromone Trail Update

An effective ACO has to achieve an
appropriate balance the exploitation and the
exploration. To get a better solution, algorithm
needs to explore the solution space as much as
possible at the beginning phase. The more
information we gather at the start of the algorithm
the better solution we obtain at the end of the
algorithm. But, using only one solution to update
pheromone is not conducive to explore. Although
the quality of solution is less than the iterathoest
solution’s in the iteration, it may contain the fude
information which can help us find optimal
solution. So pheromone is updated by two phases
in NMMAS. Let Nmax be a maximum number of
algorithm iterations, 0 /2 < 1 be a real number,
andNC be an iteration number. In first phadeC <
m2Nmax, the firstl solutions in one iteration are
used to update pheromone trail, called update by
order. Then, in phase two: NCm2Nmax, only the
iteration-best solution is used to update pheromone
Using firstl solutions for the pheromone update is
the most important means of exploration in
NMMAS. The pheromone trail updating by order is
done according to the following formula:

i
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Where = is the first ant updating
the pheromone according to the rank which is
sorted by the tour length.

A r:’(:‘ ) 1s defined as follows:

7T max S o ey
@ [/ D& if ant e travel on edge(i. j)
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0 otherwise
AT?(t) :
Where i is the quantity of
updating which caused by anton edgei(j) . [l is
the order of solutiof®s _ in this iteration. It is shown
that the increasing volume of pheromone is also
independent the value of objective function. This i
different from the mechanism of MMAS. In order
to maintain consistency of algorithm, in phase

best

AT (1), .
is defined as follows:

o best
i Jprnm if edge belongs to §
Ar ()=

0 otherwise

Pheromone Trail Initialization

In NMMAS, we initialize the pheromone
trail to the half oft,y, that is_ 0 = 0.5,a, Which
differs from the choice chosen in MMAS. With the



experimental investigation in TSP, choice of the
half of tmax is better than theamax’s. The
experimental results presented in next section
confirm the conjecture that the larger exploratién
the search space due to settif@ = 0.&max
improves MMAS'’ performance.

C. Ant Colony System (ACS)

The most significant contribution of ACS
is the introduction of a local pheromone update in
addtion to the pheromone update applied at the end
of the construction process, which is more in line
with the natural behavior of real ants.

The local pheromone update is executed
by all the ants after each construction step ofnthe
steps of an iteration. Moreover, each ant appties i
only the last path which has just been traversed:

r,={1-@)r,+017,,

where ¢€(0, 1] is the pheromone decay
coefficient, andz, is the initial value of the
pheromone on the path.

Similar to the MMAS algorithm, the
pheromone is also updated at the end of each
iteration by the iteration-best or the global-bast
only. However, the update function is slightly
different:

[(1-p)- (1) + p- Aty if the global best
7,(r+1) =4
|Az, otherse.

contains path(i. j)

where

! Lbesr

As in MMAS, Lyesican be eitheky, or Lgp,.

ACS also uses a different transisiton rule,
called the pseudorandom proportional rule. Ifkdet
be an ant located at cityqO€[0, 1] be a parameter,
andg a random value in [0,1], then the next giig
selected according to the following formula:

if g<q0:

SRV ) b
;(_ll if j=argmax ., 7T, 7

i .
l 0 otherwise,

else ¢ > q0) and (1) is used.

Additionally, ACS employs the candidate
lists to make the selections prefer some nearer
cities during the construction process.

2.5 Improved Ant Colony Optimization (HK-ACO)

An improved ant colony optimization(HK-
ACO)[9] by using Held-Karp low bound to
dynamically control the balance between
intensification and diversification.

Probability Selection Mechanism
From TSP equationp and B are two
parameters which determine the relative influence

of the pheromone trail and the heuristic
information. The role of the parameterandp is
analyzed in the following. Supposed- 0, the TSP
equation turn to be following equation:

i
21ent Mi 7

From the equation 1, the selection
probability increases with the increase pf.
Furthermore, hereZl ;; = 1/d ; is an a priori
available heuristic value. Therefore, df= 0, the
closest cities are more likely to be selected. This
corresponds to a classical stochastic greedy
algorithm. On the other hand, suppgse O, the
equation 1 turn to be following equation.

ko_ [I’e'j(”]l}
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From above equation, i = 0, only
pheromone amplification is at work. This method
will lead to the rapid convergence of a stagnation
situation with the corresponding generation of sour
which, in general, are strongly suboptimal. Hence a
trade-off between the influence of the heuristic
information and the pheromone trail exists. In orde
to achieve the tradeoff between heuristic
information and the pheromone, this paper
introduces a new approach to adjust the parameters
a andp according the following equation:

a=C-— d,'j;"'(f_,a,_\-!., + dr’j + LJ-_\-P)

ITJJ‘JI =

p=B+ dij;"ll(Lb.sp + dij + Lrsp)

In equation above, parameter C and B are
constant, and set to be 1, 5 correspondingly tteat a
suggested to be advantageoug, Is the length of
subtour visited by ant. {, is the length of subtour
not visited by ant except city i and j.jMLpsp + d
+ Ly express the proportion of the selected edge
to the optimal length. The tour is divided to three
parts, which are demonstrated in the figure 1. Thus
the influence between the heuristic information and
the pheromone trail can be adjusted according to
the equation previous.

Held-Karp lower bound procedure
Lisp is the length of city unvisited by ant

and the length is unknown. In the proposed
selection mechanism defined in previous equation,
the L, needn’t calculate explicitly. Instead, the
Held-Karp lower bound is applied to estimate the
proximate value. The Held-Karp lower bound
provides a very good problem-specific estimation
of optimal tour length for the traveling salesman
problem. This measure, which is relatively quick
and easy to compute, has enormous practical value
when evaluating the quality of near optimal
solutions for large problems where the true optima
are not known. The Held-Karp procedure used for



the experiments described in this paper is destribe
in detail in second Algorithm. In the Held-Karp
procedure, the Volgenant-Jonker formula is used
for experiments to determine how many near
neighbors of each city should be stored for the
traveling salesman problem. The idea is to
minimize the number of edges required in the
subgraph for the main iteration scheme, whilst stil
getting a good estimate of the Held-Karp lower
bound. Ideally the best value obtained from the
iteration sequence on the subgraph should equal the
final value from the O 1-tree calculation.

2.6 Ant Colony Optimization for the Traveling
Salesman Problem Based on Ants with Memory

Being different from the preexistent
attempts to Ant System, we are trying to introduce
a novel character into the agent. We let the new
ants memorize the best-so-far solution. This model
was called Ants with Memory (Mant)[10].
Generally speaking, the Mant can be used in any
version of ACO algorithms. In Mant algorithm, we
choose random part of the best-so-far solution and
make it as the new solution proportion. The Mant
based on ACO algorithm is given by table:

Initialize parameters, pheromone trails,

While (termination condition not met)Do
While (not first loop)Do
Generate random number i. j(0<i<j<n).
Put visited tag from city i+1 to j-1
Make i as start city and j as end city
Construct solutions as normal ACO
Apply local search(could use 2-opt/3-opt etc.)
Update pheromone trails
End
End

Probabilistic Mant

Aimed at weaken the memory property of
Mant, We introduce the probabilistic strategy into
Mant. That is, we control the Mant use their
memory property by a probability as used by
Dorigo in ACS[4][5](it is called pseudorandom
proportional rule). We call the new amended model
of Mant with probability p1 as MantP1, for better
illustration, we also provide Mant with probability
p2 as MantP2, here p2=1-p1. the detailed algorithm
shows in table:

Initialize parameters. pheromone trails,

‘While (termination condition not met)Do
While (not first loop)Do
Generate random number q.
If (g=< qq). construct solutions as Mant
Else. construct solutions as normal
ACO
Apply local search(could use 2-opt/3-opt etc.)
Update pheromone trails
End
End

In MantP2 algorithm, just switch (gs)q
into (q>@) in MantP1 algorithm.

2.7 An improvement of the ant colony
optimization algorithm for solving Travelling
Salesman Problem

[11]The probability of some paths that are
likely to be selected becomes low gradually when
the algorithm implements for a certain period. In
order to increase the possibility of exploring thes
paths, the pheromone needs to be re-initialized. At
this time, the pheromone of each path could be
divided into two types: the pheromone
concentration of path is close to the pheromone
concentration of current optimal path, and there is
great disparity between the two pheromone
concentrations, which shows that the ant cannot
find a better path than current optimal path.
Therefore, there are two types how to re-initialize
the pheromone concentration. The pheromone
concentration must be re-initialized when the
algorithm is implementing for a certain time, since
the shortest path is more or less fix onto the only
one path that is probably not the best one. The
pheromone concentration of a set of paths, less tha
(tminttmay/2, is set totmn, this because we can
make sure that there is no optimal path in these
paths. On the contrary, the one, greater than
(tmintTtma/2, is set to {ninttmay/2, for the optimal
is probably found in these paths. Thus, the spéed o
process searching the optimal path is accelerated b
re-initializing pheromone concentration separately.

The improved algorithm, based on MMAS
algorithm, can be described as following steps:

Initialize

At time zero the parameter and the
pheromone concentration of each path are
initialized (the pheromone concentrations have the
same initial value) during which m ants are
positioned on n towns. The starting town and the
nodes allowed to visit are initialized for each.ant

Iteration

FOR p=1 TO n //traverse all nodes, and
come back to the starting nodes.

FOR k=1 TO m // one-step transfer of ant
colony

{ assume that the ant is located at
node i



IF p<n THEN //not all the towns
are traversed.

{the ant moves to next
town according to the State
Transition formula}

ELSE //traverse all nodes

}

Update the whole pheromone of this
iteration
FORk=1TOm
{ compute } /lcompute
the ant's travel length in this
iteration, and update the whole
pheromone

Re-initialization after several iterations
IF (satisfy the condition of initialization)
THEN

Reset the pheromone concentration of
each path

according to the rule presented above,
and go into the next iteration
ELSE
{ add 1 to the number of iteration,
initialize the node list

allowed to visit of each node

GOTO step 2 //go into the next iteration

}

2.8 SolvingTSP using Tabu search algorithm
1. tabu search(TS)
2. tabu insertion search(TIS)

basic Tabu method

Tabu search begins in the same way as ordinary
local or neighborhood search, proceeding

iteratively from one point (solution) to anothettiln

a chosen termination criterion is satisfied.

Each xeX has an associated neighborhood N( x )
c X, and each solution’xe N( x ) is reached from

x by an operation called a move.

As an initial point of departure, we may contraSt T
with a simple descent method where the goal is to
minimize f(x) (or a corresponding ascent method
where the goal is to maximize f(x)). Such a method
only permits moves to neighbor solutions that
improve the current objective function value and
ends when no improving solutions can be found. A
pseudo-code of a generic descent method is
presented in Figure 2.1. The final x obtained by a
descent method is called a local optimum, since it
is at least as good or better than all solutionisin
neighborhood. The evident shortcoming of a
descent method is that such a local optimum in
most cases will not be a global optimum, i.e., it
usually will not minimize f(x) over all X .

1) Choose x eX to start the process.

2) Find x'" eN(x} such that f{x'}< f(x).

3) Ifnosuch ¥ can be found, xis the local
optimum and the method stops.

4) Otherwise, designate x' to be the new xand
20 to 2).

Greedy solution
Total weight: 40

Best static swap

. Best dynamic swa
Total weight: 47 - P

Total weight: 51

Insertion Method

1.Select two from

randomly
v = {vi,v~, ...,vj},t = {v;, vy, vi}

cities ;v W

2.If T=V, stop; else determing v; £ T), and two
consecutive vertices ;w(vi,vx E T) such that
(dy+dj-di) is minimal

3.nsert y between w, and get a new tour
T={ ..., Vi,Vj,Vi ,.__}, repeat step2)

2.9 Genetic Algorithm for the Traveling
Salesman Problem using Sequential
Constructive Crossover Operator

Sequential Constructive crossover(SCX),
for a genetic algorithm that generates high quality
solutions to the Traveling Salesman Problem
(TSP). The sequential constructive crossover
operator constructs an offspring from a pair of
parents using better edges on the basis of their
values that may be present in the parents' strictur
maintaining the sequence of nodes in the parent
chromosomes. The efficiency of the SCX is
compared as against some existing crossover
operators; namely, edge recombination crossover
(ERX) and generalized N-point crossover (GNX)
for some benchmark TSPLIB instances.

Genetic Algorithm

Genetic algorithms (GAs) are based
essentially on mimicking the survival of the fittes
among the species generated by random changes in
the gene-structure of the chromosomes in the
evolutionary biology. In order to solve any red li
problem by GA, two main requirements are to be
satisfied:



(a) a string can represent a solution of the
solution space, and

(b) an objective function and hence a
fitness function which measures the goodness of a
solution can be constructed / defined.

A simple GA works by randomly generating an
initial population of strings, which is referred as
gene pool and then applying (possibly three)
operators to create new, and hopefully, better
populations as successive generations. The first
operator is reproduction where strings are copied t
the next generation with some probability based on
their objective function value. The second operator
is crossover where randomly selected pairs of
strings are mated, creating new strings. The third
operator, mutation, is the occasional random
alteration of the value at a string position. The
crossover operator together with reproduction és th
most powerful process in the GA search. Mutation
diversifies the search space and protects from loss
of genetic material that can be caused by
reproduction and crossover. So, the probability of
applying mutation is set very low, whereas the
probability of crossover is set very high.

Sequential constructive crossover operator (SCX)
The search of the solution space is done
by creating new chromosomes from old ones. The
most important search process is crossover. Firstly
a pair of parents is randomly selected from the
mating pool. Secondly, a point, called crossover
site, along their common length is randomly
selected, and the information after the crossover
site of the two parent strings are swapped, thus
creating two new children. Of course, this basic
crossover method does not support for the TSP.

The sequential constructive crossover
(SCX) operator constructs an offspring using better
edges on the basis of their values present in the
parents' structure. It also uses the better edges,
which are present neither in the parents' structure
As the ERX and GNX, the SCX does not depend
only on the parents' structure; it sometimes
introduces new, but good, edges to the offspring,
which are not even present in the present
population. Hence, the chances of producing a
better offspring are more than those of ERX and
GNX. A preliminary version of the operator is
reported as local improvement technique.

3. Implementation and performance evaluation
3.1 Ant algorithm

Comparison of various algorithms in optimal
solution path of TSP cases.
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3.2 Tabu Search algorthm

compare result Between TIS and TS
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3.3GENETIC ALGORITHMS

COMPUTATIONAL EXPERIMENTS

For comparing the efficiency of the
different crossover operators, genetic algorithms
using SCX, ERX and GNX have been encoded in
Visual C++ on a Pentium 4 personal computer with
speed 3 GHz and 448 MB RAM under MS
Windows XP, and for some TSPLIB instances.
Initial population is generated randomly. The
following common parameters are selected for the
algorithms: population size is 200, probabiliy of
crossover is 1.0 (i.e., 100%), probability of
mutation is 0.01 (i.e., 1%), and maximum of 10,000
generations as the terminating condition. The
experiments were performed 10 times for each
instance.

Instance n Opt. ERX GNX SCX
Sol. Best Avg Avg Best Avg Avg Best Avg Avg
(%) (%) Time (%) (%) Time (%) (%) Time
bri7 17 39 0.00  0.00 210 000 000 026 000 000 0.1

ftv33 34 1286 1.94 4.98 70.22 1547 19.49 7.64 0.00 3.58 225
ftv35 36 1473 3.19 5.20 76.39 17.58 18.56 1.48 0.00 0.59 9.69
ftv3s 39 1530 4.38 5.45 160.87  6.99 13.18 4.03 0.24 0.46 6.89
p43 43 5620 1.44 189 21399 246 258 2233 005 010 2298
ftvad 45 1613 5.46 6.39 157.23 14.01 15.71 18.46 0.62 0.93 19.22
ftvd7 48 1776 5.97 8.48 200.70 20.10 20.38 4267 0.51 173 25.99
ry48p 48 14422 2.04 2.31 186,59 1518 18.13 39.33 0.59 0.60 25.73
ft53 53 6905 18.03 19.51 12275 1829 2333 29.35 1.03 177 36.73
ftvs5 56 1608 13.18 1441 32859 2251 2471 23.74 0.62 1.45 35.11
ftve4 65 1839 2524 2748 32695 2523 2987 91.39 0.49 1.54 76.56
t70 70 38673 1040 1056 561.14 6.53 7.81 90.13 0.70 0.86 74.19
ftv70 i 1950 30.41 3456 43231 2072 23.04 13597 2.15 275 58.69
kro124p 100 36230 3096 37.15 54257 2572 2858 178.64 424 493 14202
ftvi70 171 2755 6245 66.15 52646 5100 6069 48321 6.13 8.93  259.60

Summary of the results by the crossover operators
for asymmetric TSPLIB instances.

This picture gives the result for fifteen asymneetri
TSPLIB instances of size from 17 to 171. The
solution quality of the algorithms is insensitive t
the number of runs. Only one instance, brl7 of size
17, could be solved exactly by ERX and GNX,
whereas three instances, brl7, ftv33 and ftv35,
could be solved exactly, at least once in ten runs,
by SCX. Between ERX and GNX, on the basis of
quality of best solution value and average solution
value, for the instances from ftv33 to ftv64, ERX i
found to be better; but for four instances ft70,
ftv70, krol24p and ftvl70, GNX is found to be
better. That means, as size of the problem incgsease
GNX is found to be better than ERX. It is to be
noted that we have implemented only the original
versions of ERX and GNX for the comparative
study. On the basis of

quality of the solution, as a whole, for all the
instances SCX is found to be the best one. On the
basisof time of convergence, GNX is found to be
better than ERX, and SCX is the best one.
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Performance of different crossover operators on the
instance ftv170.

This picture shows performance of
different crossover operators for the instance#tv1
(considering only 1000 generations). All crossover
operators have some randomized factors, which
make them more efficient when trying to copy an
allele. The more randomized these operators are,
the more possibilities of progress should have.
Among them GNX operator has wide range of
variations, but it is not the best. Also, ERX opera
has some variations, but is the worst. On the other
hand, SCX provides us best results. But it has
limited range of variations and gets stuck in local
minimums quickly.

Instance n  Opt ERX ) GNX SCX
Sol. Best  Avg Avg Best Avg Avg Best Avg Avg
(%) (%) Time (%) (%) Time (%) (%) Time
bayg29 2o 1610 0.00 0.25 18.11 925 1062 065 0.00 0.00 219
eil51 51 426 1.41 203 15732 1878 2011 2044 000 063 4.59
berlin52 52 7542 0.00 319 78.57 19.32 2224 4011 0.00 024 510
eil76 7% 538 5.20 585 28690 20.07 2076 14196 0.00 087 12884
pr7é 76 108159 908 975 23067 2513 2636 14289 011 143 13110

kroA100 100 21282 27.43 3280 58355 5493 6847 11055 4.04 437 4875
kroC100 100 20749 4022 4225 22251 5469 59.02 20109 180 277 12376
eilt0l 101 629 2703 2772 53180 3259 3280 21937 075 112 22642
lin105 108 14379 30.05 3331 72844 4813 50.30 26480 252 267 18590
brg180 180 1950 6577 7476 7T06.00 5846 59.66 51669 0.00 051 63667
di98 188 15780 6804 7892 87077 6571 7335 30423 4.09 456 54223

Summary of the results by the crossover operators
for symmetric TSPLIB instances.

4. Result and analysis

According to all the experiments above,
TS present that can do good implement with some
small size of problem and use small amount of
iterations but not guarantee of the optimal path
solution. While the GA can implement in more
flexible way but, it use more time in calculating
and implementing also not guarantee the optimal
path solution. Otherwise, AS can do any size of the
problem and use less time to calculate than genetic
algorithm. However, AS can guarantee the optimal
path solution but, should give some time for
iteration to implement.



5. Conclusion

This survey showed the result of test,Ant
System,Tabu Search and Genetic Algorithm,its
shown that Ant System can found shortest-path at
period of time, however it can't guarantee its
iteration and time. Tabu Search can work with a
short time but sometime it can’t found the beshpat
and if it work with a large problem it just havenlo
performance. Genetic Algorithm have a high
flexibility to solve with several heuristic problem
but it take more time for equation compute. So we
can’'t summary who is the best algorithm for solve
Traveling Saleman Problem because they have
difference advantage and disadvantage.
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