
 

 

 

Abstract—Ant System(AS) ,Tabu Search (TS) 
and Genetic Algorithm (GS) are the general 
algorithm to solve Traveling Salmeman 
Problem(TSP). In this paper just compare 
between AS , TS and GS for find iteration and 
time to solve the problem. 
 
I. INTRODUCTION 
The Traveling Saleman Problem (TSP) is a general 
problem for testing any algorithm, however , no 
one can confirm that it’s have some algorithm to 
solve TSP by short time and shortest-path. Ant 
System(AS) , Tabu Search (TS) and Genetic 
Algorithm (GA) are the most useful algorithm for 
solve this problem, then, we should use them to 
solve it because if we can confirm that what the 
best algorithm for solving TSP. 
 
2. Review on recent research in algorithm for 
solving TSP 
 
2.1 Ant System 

Ant System (AS)[1] was firstly proposed 
by three Italy scholars in 1991, Dorigo, Colorni and 
Maniezzo, and has received increasing attention 
from researchers, having been used to solve many 
difficult problems in optimization of discrete 
systems. It is a bionic optimization algorithm which 
simulated intelligence behavior of ant colony in 
insect kingdom. It has some merits such as strong 
robustness, distributed computation and the use of a 
constructive greedy heuristic , as a novelty 
optimization algorithm, not liked Genetic 
Algorithm and Simulated Annealing Algorithm, 
ACA has not formed systematic analysis approach 
and the solid mathematic foundation, many theory 
questions wait for further studying, for example, 
long the search time, slow convergent speed and 
low searching efficiency and cannot expand the 
hunting zone etc. In view of these flaws, in recent 
years the domestic and foreign scholars proposed 
the massive corrective methods to the ant colony 
algorithm, for example, Max-Min Ant System 
(MMAS)[2] was put forwarded by T. Stutzle and 
H.H. Hoos, and the Best-Worst Ant 
System(BWAS)[3] proposed by literature. These 
improvement algorithms have played a certain 
promotion to enhance the performance of ant 
system. In this survey, surveyors are classifying AS 
in to three groups that used to solve TSP 
 
 
 
 

 
 
 
 
 
 
Classification of Ant System which used to solve 
TSP 
 There are many researches that use varies 
way of AS in solving TSP, some are improved 
from the main Ant Colony Optimization (ACO)[4], 
and some are use a hybrid algorithm between ACO 
and other genetic algorithms. In this survey, 
represent three groups of AS which base on 
behavior of researching methods ;  Improved AS, 
Max-Min Ant System(MMAS), Ant Colony 
System(ACS). 
 
A. Ant System (AS) 
 As mentioned above, AS is the first ACO 
algorithm presented, and it is the original version of 
various ant algorithms as well. An iteration is 
defined as the interval in (t, t+1) during which each 
of the m ants constructs a solution. In other words, 
every ant traversals all of the n cities at each 
iteration. AS together with other ant algorithms 
employs the tabu table to record the already visited 
cities of an iteration in order to obtain feasible 
answers. In the construction of a solution, ants 
choose the next city to be visited via certain search 
strategy which is a stochastic mechanism. When 
ant k is in city i, the probability of going to city j is 
given by: 

 
where tabuk is the tabu table of ant k which is 
comprised of the cities that have been visited in the 
current iteration. The parameters α and β control 
the relative importance of the pheromone τij versus 
the visibility ηij. The visibility represents the 
heuristic information, which is given by: 

 
where dij denotes the distance between city i and 
city j. This transition rule is also shared by other 
algorithms. After each iteration, the pheromone τij 
linked to the path connecting city i and j, is updated 
according the following formula: 

 
where ρ is the evaporation rate, m is the number of 

ants, and  is the quantity of pheromone laid on 
path(i,j) by ant k: 
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where Q is a constant and Lk is the tour length of 
ant k. 
 
 
 
 2.2 Moderate Ant System (MAS) 

MAS[5] is a improve version based on 
AS, differs from AS only in search strategy (i.e., 
transition rule). The pheromone concentration 
determines the choices of ants in real world, while 
in ACO algorithms combination of pheromone and 
visibility determines the choices of ants. Hence, 
infomationij is used to represent the integrated 
factors on the path from city i to city j, and 
infomationij is given by: 

 
Drawing on the search strategy of 

Monomorium ant species, the new transition rule 
should make the ants tend to select paths with 
moderate information instead of too much or too 
little information. Suppose that ant k is at city i at 
step t of an iteration. When selecting the next city 
as part of the solution, ant k has n-t adjacent cities 
available. According to Figure 3, from city i’s point 
of view, the information values on the n-t adjacent 
paths can be regarded as a stochastic variable 
follow a normal distribution N(µ,σ2) since n in TSP 
is usually a big enough number. The parameters of 
N(µ,σ2) are estimated as follow: 

 

 
 In addition, attractionij is defined as 
follows: 

 
which denotes the attraction of path from 

city i to city j for the ants in MAS. If let k be an ant 
located at city i, q0∈[0, 1] (default is 0.5 in MAS) 
be a parameter, and q a random value in [0, 1], then 
the next city j is selected according to the following 
formula: 
If q ≤ q0 : 

 
else (q > q0) and (1) is used. 
 
An Adaptive Dynamic Ant System Based on 
Acceleration for TSP (ADAS)  
 [6] It is well known the pheromone in 
cities decide ants’ routing selections. So the 

parameters’ values that affect the pheromone are 
the key. In AS, there are many parameters such as 
α, β, ρ, Q and m. α affects the global best solutions 
to get and β does the convergence speed. ρ, Q and 
m affects both of the global best and convergence 
speed but are not discussed in this paper. In ACS, 
they are const and isolated in algorithm processing. 
The parameters’ static and isolatism are the key 
factors that the global best solution is hard to arrive 
an simulation time are very large in ACS. So in the 
following part, we narrate a method to make the 
parameters interrelated in order to get the best 
balance between the global best and convergence 
speed.  
Transition probability 

Each ant k can probabilistically decide the 
next city to move to, according to formula : 

 
Where α(t) is the heuristic factor and β(t) 

is the expected heuristic factor of cycle t, and they 
are defined as the following formula. The other 
parameters are defined as above. 

 
Where Z=1/t which ensures that the larger 

t quantity the greater change α(t) and β(t) have to 
get better solution, 

 
Formula (8) shows that the ability of the 

global best should be enhanced and the 
convergence speed should be deduced when 
EO(t)<∆E1, and the aim is opposite when 
EO(t)>∆E2. 
Global pheromone update 

The pheromone trails update is modified 
as the following formula. 

 
Where ρ0(0<ρ0<1) is a user-defined 

parameter, and the other variables are defined as 
above mentioned. 



 
Qij(t+n) will be changed on the Levij(t) of 

routing (i,j),and given by the following formula : 

 
Where: Z=1/dij, n is the city quantity. 
 
The complexity of the ADAS is 

0(NC•n2•m) if we stop the algorithm after NC 
cycles. In fact step 1 is 0(n2+ m), step 2 is 0(m), 
step 3 is 0(n2•m), step 4 is O(n2•m), step5 is 0(n2), 
step 6 is 0(n•m). Since we have experimentally 
found a linear relation between the number of 
towns and the best number of ants, the complexity 
of the algorithm is 0(NC•n3). So the complexity of 
the ADAS is as same as the AS. 
 
2.3 Solving the traveling salesman problem 
using cooperative genetic ant systems (CGAS) 
 [7]Unlike those hybrid intelligent ACO 
algorithms proposed previously, in which GA or 
PSO played only a partial role in fine tuning the 
parameters for accelerating ACO convergence, we 
here propose a new algorithm that is designed to 
execute both AS and GA concurrently and 
cooperatively. This algorithm maximizes the 
advantages offered by both AS and GA 
independently, which provides a better chance in 
reaching the global optimal solutions to TSPs. A 
generic expression of CGAS is given in following 
Algorithm : 

 
Although this generic algorithm looks 

simple, it requires a good understanding of some 
key concepts adopted in this algorithm which differ 
CGAS from others. Firstly, the strategy of selecting 
the next city for an ant to visit is based on natural 
ordering and selection. In each city, we create a 
sorted list of a certain number of cities that are the 
closest to it. In a natural selection process, a closer 
city has a higher probability to be chosen for the 
next move. To make the use of this list more 

efficient, this sorted list should only contain a 
certain number of closest cities. This constant (C0) 
depends on the number (n) of cities for a particular 
TSP, and not exclusive, a rough guide would be C0 
= (5% - 15%) * n.  

For ant k in city i to select the next city j 
to visit, ant k will firstly consult the sorted list c(i) 
of city i to select the closest city from it. If this city 
is in set Sk, it will be the next city to visit. If c(i) 
has no intersection with Sk, then the traditional 
mechanism of AS is used to select a city outside the 
list. This selection process is summarized as: 

 
Since this natural ordering and selection 

strategy is adopted for choosing the next city to 
visit during iteration, local pheromone update is no 
longer required. 

The solution (sequence of cities visited) of 
each ant’s first iteration constitutes a component of 
the initial population for GA. Afterwards AS and 
GA are executed concurrently in the while loop. In 
the end of each iteration, the two best solutions 
with the shortest length of tour from both AS (Abest) 
and GA (Gbest) are compared to determine the 
shortest path for the round. Whichever is shorter, it 
is used to replace the other. This keeps the best 
solution of each round evolving during the entire 
process. 
 
B. Max-Min Ant System (MMAS) 
 MMAS[2] differs from the AS in two 
main aspects: only the best ant is allowed to update 
the pheromone trails, and the value of pheromone 
on the paths is bound. The pheromone update 
function is implemented as follows: 

 
where τmax and τmin are the upper bound 

and lower bound of the amount of pheromone on 

the paths, respectively; the operator  is 
defined as follows: 

 

 
Lbest is the length of the tour obtained by 

the best ant. It can be the best solution found in the 
current iteration—iterationbest, Lib or the best 
solution found since the beginning of the 
algorithm—global-best, Lgb , or a combination of 
both (subject to the algorithm designer’s decision). 

With respect to the upper and lower 
bounds on the pheromone values, τmax and τmin tend 



to be set empirically and are determined on a case-
by-case basis. Nevertheless, there are still some 
guide lines that have been proposed for defining 
τmax and τmin on the basis of analytical 
considerations. 
 
2.4 A Novel Max-Min Ant System Algorithm 
(NMMAS) 
 In MMAS [2], the upper bound τmax is set 
to an estimate of the asymptotically maximum 
value, and the lower bound τmin is set to ετmax where 
0 < ε <1. For TSP, They are set by 

 
Where avg = n/2, pbest is significantly higher than 
0.5. 
 From formula above, it can be found that 
the upper and lower bounds of pheromone trail are 
relevant to the value of objective function. They 
have to reset each time when a new global-best 
solution is found. It is one of inconvenience for 
practical problem. Another is using only one 
solution for the pheromone update. By this choice, 
solution elements which frequently occur in the 
best found solutions get a large reinforcement, that 
is, it is useful the ants exploit the solution space. 
But, it limits the capabilities of exploration as the 
search concentrate too fast. It may lead to trap in 
poor quality solutions. So we introduce a novel 
Max-Min ant system, called NMMAS[8], to 
overcome the shortage of MMAS. 
 
Pheromone Trail Limits 

In experiment, we find out that the 
pheromone trail value can be independence of the 
value of objective function. But, to achieve better 
performance it has something to do with the 
heuristic value. If the gap between the pheromone 
trail value and the heuristic value is too large, the 
role of heuristic value in random proportional rule 
will be lose. The heuristic value in TSP is defined 
as the inverse of distance. So in NMMAS, one 
random sampling is needed to obtain the length of 
tour, and the interval of pheromone is determined. 

From formula above, the ratio of the upper 
bound and the lower bound is over 1000. So the 
lower bound of pheromone trail is set to m1τmax, 
where m1 is a real constant number, 0 < m1 < 1. 
Then, if upper bound which has nothing to do with 
the value of objective function, then the limit of 
pheromone trail value is also too. In practice, the 
length of tour is corresponded to one interval. At 
the beginning of algorithm, random sampling is 
used to get the length. Then, we can choice the 

interval though the range of length. For example, if 
the length L <= 2000, then τmax = 0.1; if 2000 < L 
<= 20000, τmax = 0.01; … 
 
Pheromone Trail Update 

An effective ACO has to achieve an 
appropriate balance the exploitation and the 
exploration. To get a better solution, algorithm 
needs to explore the solution space as much as 
possible at the beginning phase. The more 
information we gather at the start of the algorithm, 
the better solution we obtain at the end of the 
algorithm. But, using only one solution to update 
pheromone is not conducive to explore. Although 
the quality of solution is less than the iteration-best 
solution’s in the iteration, it may contain the useful 
information which can help us find optimal 
solution. So pheromone is updated by two phases 
in NMMAS. Let Nmax be a maximum number of 
algorithm iterations, 0 < m2 < 1 be a real number, 
and NC be an iteration number. In first phase: NC < 
m2Nmax, the first l solutions in one iteration are 
used to update pheromone trail, called update by 
order. Then, in phase two: NC < m2Nmax, only the 
iteration-best solution is used to update pheromone. 
Using first l solutions for the pheromone update is 
the most important means of exploration in 
NMMAS. The pheromone trail updating by order is 
done according to the following formula: 

 

Where  is the first l ant updating 
the pheromone according to the rank which is 
sorted by the tour length. 

 

 

 

 Where  is the quantity of 
updating which caused by ant ὠ on edge (i, j) . ὠ is 
the order of solution S_ in this iteration. It is shown 
that the increasing volume of pheromone is also 
independent the value of objective function. This is 
different from the mechanism of MMAS. In order 
to maintain consistency of algorithm, in phase 

is defined as follows: 

 
 
Pheromone Trail Initialization  

In NMMAS, we initialize the pheromone 
trail to the half of τmax, that is _0 = 0.5τmax, which 
differs from the choice chosen in MMAS. With the 



experimental investigation in TSP, choice of the 
half of τmax is better than the τmax’s. The 
experimental results presented in next section 
confirm the conjecture that the larger exploration of 
the search space due to setting τ0 = 0.5τmax 
improves MMAS’ performance. 
 
C. Ant Colony System (ACS) 

The most significant contribution of ACS 
is the introduction of a local pheromone update in 
addtion to the pheromone update applied at the end 
of the construction process, which is more in line 
with the natural behavior of real ants. 

The local pheromone update is executed 
by all the ants after each construction step of the n 
steps of an iteration. Moreover, each ant applies it 
only the last path which has just been traversed: 

 
where φ∈(0, 1] is the pheromone decay 

coefficient, and τ0  is the initial value of the 
pheromone on the path. 

Similar to the MMAS algorithm, the 
pheromone is also updated at the end of each 
iteration by the iteration-best or the global-best ant 
only. However, the update function is slightly 
different: 

 

 
As in MMAS, Lbest can be either Lib or Lgb. 
ACS also uses a different transisiton rule, 

called the pseudorandom proportional rule. If let k 
be an ant located at city i, q0∈[0, 1] be a parameter, 
and q a random value in [0,1], then the next city j is 
selected according to the following formula: 

if q ≤ q0 : 

 
 
else (q > q0) and (1) is used. 
Additionally, ACS employs the candidate 

lists to make the selections prefer some nearer 
cities during the construction process. 

 
2.5 Improved Ant Colony Optimization (HK-ACO)  

An improved ant colony optimization(HK-
ACO)[9] by using Held-Karp low bound to 
dynamically control the balance between 
intensification and diversification. 
 
Probability Selection Mechanism 

From TSP equation, α and β are two 
parameters which determine the relative influence 

of the pheromone trail and the heuristic 
information. The role of the parameters α and β is 
analyzed in the following. Supposed α = 0, the TSP 
equation turn to be following equation: 

 
From the equation 1, the selection 

probability increases with the increase of β . 
Furthermore, here ὠ i j = 1/di j is an a priori 
available heuristic value. Therefore, If α = 0, the 
closest cities are more likely to be selected. This 
corresponds to a classical stochastic greedy 
algorithm. On the other hand, suppose β = 0, the 
equation 1 turn to be following equation. 

 
From above equation, if β = 0, only 

pheromone amplification is at work. This method 
will lead to the rapid convergence of a stagnation 
situation with the corresponding generation of tours 
which, in general, are strongly suboptimal. Hence a 
trade-off between the influence of the heuristic 
information and the pheromone trail exists. In order 
to achieve the tradeoff between heuristic 
information and the pheromone, this paper 
introduces a new approach to adjust the parameters 
α and β according the following equation: 

 
In equation above, parameter C and B are 

constant, and set to be 1, 5 correspondingly that are 
suggested to be advantageous. Lbsp is the length of 
subtour visited by ant. Lrsp is the length of subtour 
not visited by ant except city i and j. di j/(Lbsp + di j 
+ Lrsp) express the proportion of the selected edge 
to the optimal length. The tour is divided to three 
parts, which are demonstrated in the figure 1. Thus, 
the influence between the heuristic information and 
the pheromone trail can be adjusted according to 
the equation previous. 
 
Held-Karp lower bound procedure 

Lrsp is the length of city unvisited by ant 
and the length is unknown. In the proposed 
selection mechanism defined in previous equation, 
the Lrsp needn’t calculate explicitly. Instead, the 
Held-Karp lower bound is applied to estimate the 
proximate value. The Held-Karp lower bound 
provides a very good problem-specific estimation 
of optimal tour length for the traveling salesman 
problem. This measure, which is relatively quick 
and easy to compute, has enormous practical value 
when evaluating the quality of near optimal 
solutions for large problems where the true optima 
are not known. The Held-Karp procedure used for 



the experiments described in this paper is described 
in detail in second Algorithm. In the Held-Karp 
procedure, the Volgenant-Jonker formula is used 
for experiments to determine how many near 
neighbors of each city should be stored for the 
traveling salesman problem. The idea is to 
minimize the number of edges required in the 
subgraph for the main iteration scheme, whilst still 
getting a good estimate of the Held-Karp lower 
bound. Ideally the best value obtained from the 
iteration sequence on the subgraph should equal the 
final value from the O(n2) 1-tree calculation. 
 
2.6 Ant Colony Optimization for the Traveling 
Salesman Problem Based on Ants with Memory 
 Being different from the preexistent 
attempts to Ant System, we are trying to introduce 
a novel character into the agent. We let the new 
ants memorize the best-so-far solution. This model 
was called Ants with Memory (Mant)[10]. 
Generally speaking, the Mant can be used in any 
version of ACO algorithms. In Mant algorithm, we 
choose random part of the best-so-far solution and 
make it as the new solution proportion. The Mant 
based on ACO algorithm is given by table: 

 
 
Probabilistic Mant 

Aimed at weaken the memory property of 
Mant, We introduce the probabilistic strategy into 
Mant. That is, we control the Mant use their 
memory property by a probability as used by 
Dorigo in ACS[4][5](it is called pseudorandom 
proportional rule). We call the new amended model 
of Mant with probability p1 as MantP1, for better 
illustration, we also provide Mant with probability 
p2 as MantP2, here p2=1-p1. the detailed algorithm 
shows in table: 

 
In MantP2 algorithm, just switch (q<q0) 

into (q>q0) in MantP1 algorithm. 
 

2.7 An improvement of the ant colony 
optimization algorithm for solving Travelling 
Salesman Problem 
 [11]The probability of some paths that are 
likely to be selected becomes low gradually when 
the algorithm implements for a certain period. In 
order to increase the possibility of exploring these 
paths, the pheromone needs to be re-initialized. At 
this time, the pheromone of each path could be 
divided into two types: the pheromone 
concentration of path is close to the pheromone 
concentration of current optimal path, and there is 
great disparity between the two pheromone 
concentrations, which shows that the ant cannot 
find a better path than current optimal path. 
Therefore, there are two types how to re-initialize 
the pheromone concentration. The pheromone 
concentration must be re-initialized when the 
algorithm is implementing for a certain time, since 
the shortest path is more or less fix onto the only 
one path that is probably not the best one. The 
pheromone concentration of a set of paths, less than 
(τmin+τmax)/2, is set to τmin, this because we can 
make sure that there is no optimal path in these 
paths. On the contrary, the one, greater than 
(τmin+τmax)/2, is set to (τmin+τmax)/2, for the optimal 
is probably found in these paths. Thus, the speed of 
process searching the optimal path is accelerated by 
re-initializing pheromone concentration separately. 

The improved algorithm, based on MMAS 
algorithm, can be described as following steps: 

Initialize 
At time zero the parameter and the 

pheromone concentration of each path are 
initialized (the pheromone concentrations have the 
same initial value) during which m ants are 
positioned on n towns. The starting town and the 
nodes allowed to visit are initialized for each ant. 

Iteration 
FOR p=1 TO n //traverse all nodes, and 

come back to the starting nodes. 
FOR k=1 TO m // one-step transfer of ant 

colony  
{ assume that the ant is located at 

node i  



IF p<n THEN //not all the towns 
are traversed.  

{the ant moves to next 
town according to the State 
Transition formula} 
ELSE //traverse all nodes 
} 

 
Update the whole pheromone of this 

iteration 
FOR k=1 TO m 

{ compute } //compute 
the ant’s travel length in this 
iteration, and update the whole 
pheromone 

 
Re-initialization after several iterations 
IF (satisfy the condition of initialization) 
THEN 
     Reset the pheromone concentration of 
each path 
     according to the rule presented above, 
and go into the next iteration 
ELSE 
{     add 1 to the number of iteration, 
initialize the node list 
     allowed to visit of each node 
     GOTO step 2 //go into the next iteration 
} 

 
2.8 Solving TSP using Tabu search algorithm 

1. tabu search(TS) 
2. tabu insertion search(TIS) 

 
basic  Tabu method 
Tabu search begins in the same way as ordinary 
local or neighborhood search, proceeding 
iteratively from one point (solution) to another until 
a chosen termination criterion is satisfied. 
Each x ∈X has an associated neighborhood N( x ) 
⊂ X , and each solution x ′ ∈ N( x ) is reached from 
x by an operation called a move. 
As an initial point of departure, we may contrast TS 
with a simple descent method where the goal is to 
minimize f(x) (or a corresponding ascent method 
where the goal is to maximize f(x)). Such a method 
only permits moves to neighbor solutions that 
improve the current objective function value and 
ends when no improving solutions can be found. A 
pseudo-code of a generic descent method is 
presented in Figure 2.1. The final x obtained by a 
descent method is called a local optimum, since it 
is at least as good or better than all solutions in its 
neighborhood. The evident shortcoming of a 
descent method is that such a local optimum in 
most cases will not be a global optimum, i.e., it 
usually will not minimize f(x) over all x ∈X . 
 

 
 

 
 
Insertion Method 
 
1.Select  two  cities  vi,  vk  randomly  from  
� �  ��� , �~, … , ���,  �   ��� , �� , ��� 
 
2.If  T=V, stop;  else determine vj (vj £ T),  and two 
consecutive  vertices  vi,vk(vi,vk Ε  T)  such  that 
(dij+djk-dik) is minimal 
 
3.Insert  vj  between  vi,vk, and  get  a  new  tour 
T={ ..., vi,vj,vk ,.__ }, repeat step2) 
 
2.9 Genetic Algorithm for the Traveling 
Salesman Problem using Sequential 
Constructive Crossover Operator 
 Sequential Constructive crossover(SCX), 
for a genetic algorithm that generates high quality 
solutions to the Traveling Salesman Problem 
(TSP). The sequential constructive crossover 
operator constructs an offspring from a pair of 
parents using better edges on the basis of their 
values that may be present in the parents' structure 
maintaining the sequence of nodes in the parent 
chromosomes. The efficiency of the SCX is 
compared as against some existing crossover 
operators; namely, edge recombination crossover 
(ERX) and generalized N-point crossover (GNX) 
for some benchmark TSPLIB instances. 
 
Genetic Algorithm 
 Genetic algorithms (GAs) are based 
essentially on mimicking the survival of the fittest 
among the species generated by random changes in 
the gene-structure of the chromosomes in the 
evolutionary biology. In order to solve any real life 
problem by GA, two main requirements are to be 
satisfied:  
  



 (a) a string can represent a solution of the 
solution space, and 
 (b) an objective function and hence a 
fitness function which measures the goodness of a 
solution can be constructed / defined. 
 
A simple GA works by randomly generating an 
initial population of strings, which is referred as 
gene pool and then applying (possibly three) 
operators to create new, and hopefully, better 
populations as successive generations. The first 
operator is reproduction where strings are copied to 
the next generation with some probability based on 
their objective function value. The second operator 
is crossover where randomly selected pairs of 
strings are mated, creating new strings. The third 
operator, mutation, is the occasional random 
alteration of the value at a string position. The 
crossover operator together with reproduction is the 
most powerful process in the GA search. Mutation 
diversifies the search space and protects from loss 
of genetic material that can be caused by 
reproduction and crossover. So, the probability of 
applying mutation is set very low, whereas the 
probability of crossover is set very high. 
 
Sequential constructive crossover operator (SCX)   

The search of the solution space is done 
by creating new chromosomes from old ones. The 
most important search process is crossover. Firstly, 
a pair of parents is randomly selected from the 
mating pool. Secondly, a point, called crossover 
site, along their common length is randomly 
selected, and the information after the crossover 
site of the two parent strings are swapped, thus 
creating two new children. Of course, this basic 
crossover method does not support for the TSP. 
 

The sequential constructive crossover 
(SCX) operator constructs an offspring using better 
edges on the basis of their values present in the 
parents' structure. It also uses the better edges, 
which are present neither in the parents' structure. 
As the ERX and GNX, the SCX does not depend 
only on the parents' structure; it sometimes 
introduces new, but good, edges to the offspring, 
which are not even present in the present 
population. Hence, the chances of producing a 
better offspring are more than those of ERX and 
GNX. A preliminary version of the operator is 
reported as local improvement technique. 
 
 
3. Implementation and performance evaluation 
 
3.1 Ant algorithm 
Comparison of various algorithms in optimal 
solution path of TSP cases. 

 
 

 
 
 
3.2 Tabu Search algorthm 
 
compare result Between TIS and TS 

 

 
 
  



3.3 GENETIC ALGORITHMS 
 
COMPUTATIONAL EXPERIMENTS 
 For comparing the efficiency of the 
different crossover operators, genetic algorithms 
using SCX, ERX and GNX have been encoded in 
Visual C++ on a Pentium 4 personal computer with 
speed 3 GHz and 448 MB RAM under MS 
Windows XP, and for some TSPLIB instances. 
Initial population is generated randomly. The 
following common parameters are selected for the 
algorithms: population size is 200, probabiliy of 
crossover is 1.0 (i.e., 100%), probability of 
mutation is 0.01 (i.e., 1%), and maximum of 10,000 
generations as the terminating condition. The 
experiments were performed 10 times for each 
instance. 

 
 
Summary of the results by the crossover operators 
for asymmetric TSPLIB instances. 
 
This picture gives the result for fifteen asymmetric 
TSPLIB instances of size from 17 to 171. The 
solution quality of the algorithms is insensitive to 
the number of runs. Only one instance, br17 of size 
17, could be solved exactly by ERX and GNX, 
whereas three instances, br17, ftv33 and ftv35, 
could be solved exactly, at least once in ten runs, 
by SCX. Between ERX and GNX, on the basis of 
quality of best solution value and average solution 
value, for the instances from ftv33 to ftv64, ERX is 
found to be better; but for four instances ft70, 
ftv70, kro124p and ftv170, GNX is found to be 
better. That means, as size of the problem increases 
GNX is found to be better than ERX. It is to be 
noted that we have implemented only the original 
versions of ERX and GNX for the comparative 
study. On the basis of 
quality of the solution, as a whole, for all the 
instances SCX is found to be the best one. On the 
basisof time of convergence, GNX is found to be 
better than ERX, and SCX is the best one.  
 

 
 
Performance of different crossover operators on the 
instance ftv170. 

This picture shows performance of 
different crossover operators for the instance ftv170 
(considering only 1000 generations). All crossover 
operators have some randomized factors, which 
make them more efficient when trying to copy an 
allele. The more randomized these operators are, 
the more possibilities of progress should have. 
Among them GNX operator has wide range of 
variations, but it is not the best. Also, ERX operator 
has some variations, but is the worst. On the other 
hand, SCX provides us best results. But it has 
limited range of variations and gets stuck in local 
minimums quickly.  
 

 
Summary of the results by the crossover operators 
for symmetric TSPLIB instances.  
 

 
4. Result and analysis 
 
 According to all the experiments above, 
TS present that can do good implement with some 
small size of problem and use small amount of 
iterations but not guarantee of the optimal path 
solution. While the GA can implement in more 
flexible way but, it use more time in calculating 
and implementing also not guarantee the optimal 
path solution. Otherwise, AS can do any size of the 
problem and use less time to calculate than genetic 
algorithm. However, AS can guarantee the optimal 
path solution but, should give some time for 
iteration to implement. 
 
 
 
  



5. Conclusion 
 This survey showed the result of test,Ant 
System,Tabu Search and Genetic Algorithm,its 
shown that Ant System can found shortest-path at  
period of time, however it can’t guarantee its 
iteration and time. Tabu Search can work with a 
short time but sometime it can’t found the best path 
and if it work with a large problem it just have low 
performance. Genetic Algorithm have a high 
flexibility to solve with several heuristic problem 
but it take more time for equation compute. So we 
can’t summary who is the best algorithm for solve 
Traveling Saleman Problem because they have 
difference advantage and disadvantage. 
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